Newsletter

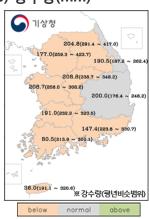
61公川辛姓川

July 2018

안전한 나라, 안심하는 국민 / 국민 중심의 기상·지진 서비스 실현

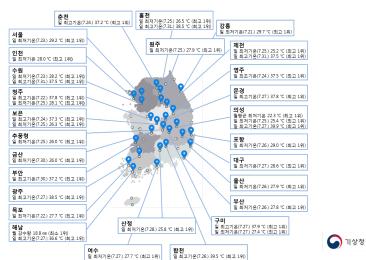

발간번호 11-1360000-000072-08

2018년 7월 기후 요약


- 우리나라의 평균기온은 26.8℃로 평년보다 높았고, 강수량은 172.3mm로 평년보다 적었습니다.
- 전세계 기온은 북유럽, 중동, 동아시아, 북미, 남미 서부에서 평년보다 높았고, 서시베리아, 아르헨티나에서 평년보다 낮았습니다.
- 최근(7.22.~7.28.) 엘니뇨·라니냐 감시구역 해수면 온도는 평년보다 0.4℃ 높았습니다.
- 북태평양고기압의 영향으로 기온이 높은 날이 많았으며, 최고기온의 이상고온 발생일수는 16.7일로 평년(3.0일)보다 많았습니다.

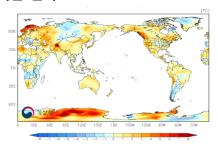
우리나라 기온 및 강수량

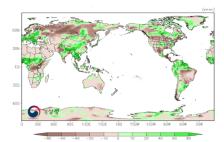
a) 평균기온(℃)



b) 강수량(mm)

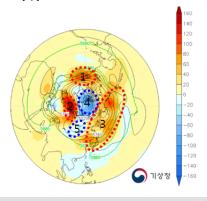
- 전국 평균기온은 26.8℃로 평년(24.0~25.0℃)보다 높았고, 1973년 이후 두 번째로 높은 기온을 기록하였으며(1위: 1994년 28.0℃), 모든 권역에서 평년보다 높았습니다.
- 전국 강수량은 172.1mm로 평년(240.4~295.9mm) 보다 적었으나(1973년이후 최소 6위), 강원도 영동, 대구·경상북도는 평년과 비슷하였습니다.

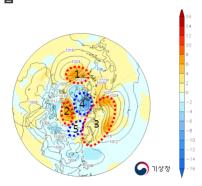

c) 우리나라 극값 현황


※ 전국(45개 지점) 및 제주도(2개 지점)의 7월 평균기온, 최고기온, 최저기온, 강수량 월통계값과 일극값 경신 현황(1위)

전세계 기온과 강수량

a) 평균기온 편차


b) 강수량 편차


- a) 기온은 북아프리카, 유럽, 중동, 러시아 서부, 동시베리아, 중국, 일본, 호주, 북미, 멕시코, 페루, 칠레에서 평년 보다 높았고, 중앙 아프리카와 동아프리카, 중앙 시베리아, 아르헨티나, 그린란드에서 평년보다 낮았습니다.
- b) 강수량은 남유럽, 중앙 아프리카 북부, 인도 북부~베트남, 중국, 몽골 북부, 캐나다, 남미 북부와 남동부에서 평년보다 많았고, 중앙 아프리카 남부, 북유럽, 러시아 서부, 서시베리아, 미국, 브라질, 칠레에서 평년보다 적었습니다.
- ※ 자료: NCEP(National Centers for Environmental Prediction) 분석자료

전지구 순환장

a) 500hPa 지위고도

b) 해면기압

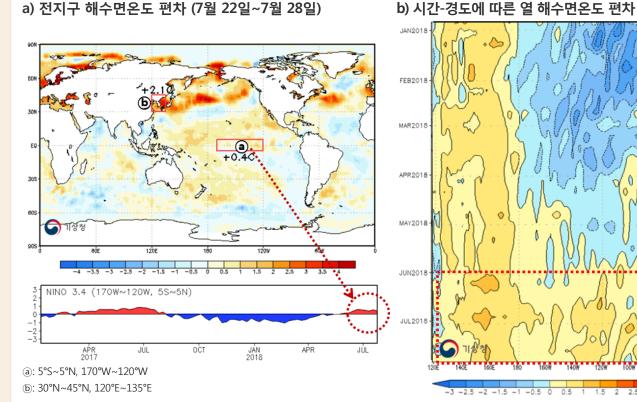
- a) **[500hPa 지위고도 편차장]** 북미 동부¹⁾, 스칸디나비아 반도²⁾, 우리나라부터 북미 서안³⁾까지 평년보다 지위고도가 높았고, 북극⁴⁾, 바이칼 호⁵⁾에서 지위고도가 평년보다 낮았습니다.
- b) **[해면기압 편차장]** 500hPa 지위고도 편차장과 유사한 편차 분포를 보였으며, 북극 $^{4)}$ 은 평년보다 해면기압이 낮았고, 중위도 대부분 $^{1)\sim3}$ 은 평년보다 해면기압이 높았습니다.

※ 자료: NCEP(National Centers for Environmental Prediction) 재분석자료

※ 실선은 지위고도(해면기압)이며, 채색을 편차를 의미함. 편차는 1981년부터 2010년까지의 30년간의 평균자료를 기준으로 산출함

전 지구 기온편차 및 순위 (2017년 7월 ~ 2018년 6월)

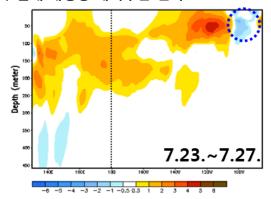
년	2017					2018					기준		
\ <u>B</u>	7	8	9	10	11	12	1	2	3	4	5	6	기正
편차	+0.83	+0.83	+0.78	+0.73	+0.75	+0.80	+0.71	+0.65	+0.83	+0.83	+0.80	+0.75	1901~ 2000
순위	2	3	4	4	5	4	5	11	5	3	4	5	1880~


※ 본 자료는 NOAA(www.ncdc.noaa.gov/sotc/global)에서 제공하는 자료이며, 익월 20일 경에 값이 산출되므로, 6월 자료까지만 제공 하였음 (2018년 7월 값은 2018년 8월 20일 경 발표)

※ 편차는 1901년부터 2000년까지의 100년간의 평균자료, 순위는 1880년부터 139년간의 자료를 기준으로 산출함

2

해수면온도 편차


a) 전지구 해수면온도 편차 (7월 22일~7월 28일)

※ 자료: NOAA Optimal Interpolation (OI) SST Analysis, version 2 (OISSTv2)

- a) 최근 해수면온도는 열대 태평양 엘니뇨·라니냐 감시구역(ⓐ)에서 평균 27.4℃로 평년보다 0.4℃ 높았고, 우리나라 주변(ⓑ)의 해수면온도는 평균 26.1℃로 평년보다 2.1℃ 높았습니다.
- b) 2018년 6월부터 열대 태평양 대부분 해역에서 평년과 비슷하거나 다소 높은 해수면온도가 지속되고 있습니다.

c) 열대 태평양 해저수온 편차

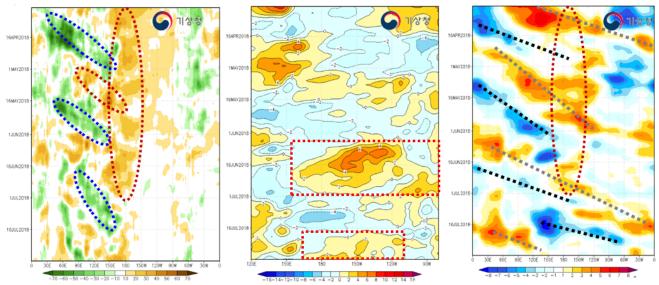
열대 중태평양 100~200m에 위치한 양의 해저수온 편차는 지속되고 있으며, 최근 동태평양 50m에 음의 해저수온 편차 영역이 나타났습니다.

※ 평년보다 높은 수온(빨강)/평년보다 낮은 수온(파랑)

※ 자료출처: NOAA/Pacific Marine Environmental Laboratory/Tropical Atmosphere Ocean project (www.pmel.noaa.gov/tao/jsdisplay)

우리나라 엘니뇨(라니냐) 정의

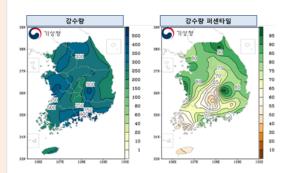
엘니뇨·라니냐 감시구역(열대 태평양 Nino3.4 지역: 5°S~5°N, 170°W~120°W)의 3개월 이동 평균한 해수면온도의 편차가 0.5℃ 이상(-0.5℃ 이하)로 5개월 이상 지속될 때 그 첫 달을 엘니뇨(라니냐)의 시작으로 봄


※ 2016년 12월 23일부터 적용

열대 대기 순환장

a) 상향 장파복사 편차

c) 300hPa 상층수렴발산편차



- ▶ 대류활발(초록)/ 대류억제(갈색)
- ▶ 서풍 편차(빨강)/동풍 편차(파랑)
- ▶ 상층 발산(파랑)/상층 수렴(빨강)

- ※ 상향장파복사(Outgoing Long-wave Radiation, OLR) 자료: NOAA
- ※ 850hPa 동서 바람편차 및 300hPa 상층 수렴 발산 편차 자료: NCEP(National Centers for Environmental Prediction) 재분석자료
 - a) 날짜 변경선 부근에서 대류활동이 평년보다 억제되는 경향이 뚜렷했으나, 7월 들어 약화되었습니다.
 - b) 6월부터 중-동태평양을 중심으로 서풍 편차가 나타났으나, 7월 전반에 약화되었고 후반에 다시 서풍 편차가 나타났습니다.
 - c) 4월부터 상층 발산 수렴 영역이 동진하는 경향을 보이는 가운데, 날짜변경선 부근에서 4월부터 나타나던 상층 수렴이 7월부터 약화되었습니다(a)의 대류억제와 연관).

2018년 장마

a) 장마 강수량 및 강수량 퍼센타일

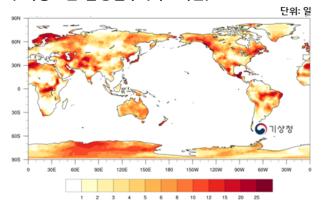
b) 장마의 시종과 지역별 강수량

< 올해(2018년)와 평년(1981~2010년)의 장마 시작일과 종료일 및 기간 >

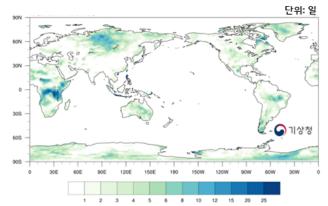
		올해		평년			
	시작	종료	기간(일)	시작	종료	기간(일)	
중부지방	6.26.	7.11.	16	6.24. ~ 25.	7.24. ~ 25.	32	
남부지방	6.26.	7.9.	14	6.23.	7.23. ~ 24.	32	
제주도	6.19.	7.9.	21	6.19. ~ 20.	7.20. ~ 21.	32	

< 올해(2018년)와 평년(1981~2010년)의 장마기간 강수일수 및 평균 강수량 >

		올해	평년			
	강수일수(일)	평균 강수량(㎜)	강수일수(일)	평균 강수량(㎜)		
중부지방	11.0	281.7	17.2	366.4		
남부지방	10.2	284.0	17.1	348.6		
제주도	14.5	235.1	18.3	398.6		
전국	10.5	283.0	17.1	356.1		

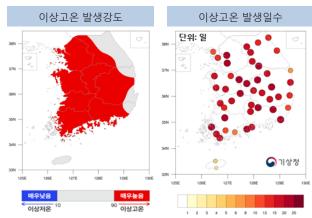

※ 전국: 45개 지점 평균(중부 19개 지점, 남부 26개 지점)

※ 퍼센타일: 동일 기간의 강수량을 크기가 작은 것부터 나열하여 가장 작은 값을 0, 가장 큰 값을 100으로 하는 수


- · 2018년 장마는 6월 19일 제주도에서 시작되어, 7월 11일 중부지방에 비를 내린 후 종료되었습니다.
- · 장마기간은 제주도가 21일, 남부지방이 14일, 중부지방이 16일로 평년(32일)보다 짧았습니다. 장마가 일찍 종료되면서 장마기간 동안의 전국 평균 강수량은 283.0mm로 적었습니다.
- ※ 장마 분석에 대한 자세한 사항은 2018.7.17.(화)에 발표한 '2018년 장마 특성' 보도자료 참고

전세계 이상기후

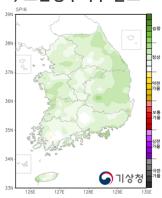
a) 이상고온 발생일수 (최고기온)


b) 이상저온 발생일수 (최저기온)

북유럽, 아프리카 북서부와 중부, 중동, 우리나라와 일본, 북미 서부와 캐나다 동부, 브라질 등에서 이상고온이 발생하였고, 아프리카 중부, 중앙 시베리아 등에서 이상저온이 발생하였습니다.

우리나라 이상기후

a) 이상고온 발생강도 및 일수(최고기온)


- ◆ 이상기후 정의: 기온, 강수량 등의 기후요소가 평년 (1981~2010년)에 비해 현저히 높거나 낮은 수치를 나타내는 극한현상
- ◆ 퍼센타일: 평년기간 같은 월에 발생한 기온을 비교하여 작은 순서대로 몇 번째인지 나타내는 백분위수

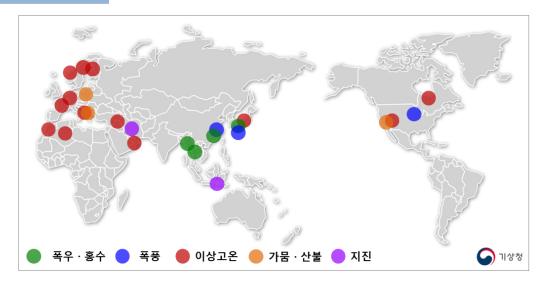
매우높음 90 > 이상고온 (최저·최고기온 90퍼센타일 초과)

9일까지 기온의 변동 폭이 컸으나, 이후 북태평양고기압의 영향을 받아 11일부터 기온이 매우 높은 날이 지속되었고 29일부터는 동풍이 유입되어 서쪽지방의 기온이 더 크게 올랐습니다.

- →**발생강도**: 동해안 일부를 제외한 전국 최고기온이 이상 고온에 해당하였습니다.
- →**발생일수**: 대부분의 지역에서 이상고온이 12일 이상 발생하였으며, 전국평균 16.7일로 평년(3.0일)보다 매우 많았습니다.

b) 표준강수지수 분포

c) 경상북도 상주시 표준강수지수(SPI6) 변화추이



→누적강수량: 최근 6개월 누적 강수량(705.0mm)은 평년 대비 98.2% 수준입니다. →가뭄: 장마 시작 이후(6.19.~7.31.) 전국평균 강수량은 290.5mm로 평년(384.2mm) 보다 적었으나, 최근 6개월 동안 전국 누적강수량은 평년의 98.2% 수준으로 기상가뭄은 발생하지 않았습니다.

※ 표준강수지수

- : 최근 6개월 누적강수량과 과거 동일기간의 강수량을 비교하여 가뭄정도를 나타내는 지수
- 습함(1.0 이상), 정상(1.0~-1.0), 약한가뭄(-1.0~-1.5), 보통가뭄(-1.5~-2.0), 심한가뭄(-2.0이하), 극한가뭄(-2.0이하 20일 이상 지속)

전세계 기상재해

폭우·홍수

- (미얀마) 폭우, 최소 10명 사망, 이재민 10만여 명 발생 (7.28.~31.)
- (태국) 폭우 및 산사태, 7명 사망, 1명 실종, 메콩강 범람 (7.28.~31.)
- (중국) 남동부 폭우, 54명 사망, 8명 실종, 이재민 2000만여 명 발생 (7.18.~19.)
- (일본) 서부 폭우, 나흘간 강수량 최고 1,687mm 기록, 159명 사망, 72명 실종, 이재민 1만여 명 발생(7.5.~8.)

폭풍

- (중국) 제8호 태풍 '마리아', 이재민 58만여 명 발생, 10여 명 사상(7.11.) / 동부 제10호 태풍 '암필' (7.23.)
- (일본) 오키나와 제7호 태풍 '쁘라삐룬', 4천여 가구 정전, 폭풍경보 발령 (7.2.)
- 중부 제12호 태풍 '종다리', 21명 부상, 항공기 180여 편 결항, 15만여 가구 정전 (7.28.~29.)
- (미국) 아이오와주 토네이도, 17명 부상 (7.19.)

이상고온

- **(스웨덴)** 100년만의 폭염, 최고기온 34.6℃ 기록, 관측사상 최고기온 기록, 산불 50건 이상 발생 (7월)
- **(노르웨이/핀란드)** 이상고온, 최고기온 33.5℃, 밤 최저기온 25.2℃ / 최고기온 33.4℃ 기록 (7월)
- (독일/프랑스) 최고기온 37°C 기록, 발전기 가동 중단 (7월)
- (그리스) 폭염, 최고기온 40°C 기록, 아크로폴리스 관광지 운영 중단 (7월)
- (알제리/모로코) 폭염, 최고기온 51.3℃, 관측사상 최고기온 기록 / 43.4℃ 기록, 관측사상 최고기온 기록 (7월)
- (아르메니아) 폭염, 최고기온 42°C 기록, 7월 최고기온 기록 (7월)
- (오만) 폭염, 최저기온 42.6°C 기록, 최저기온 최고 세계기록 경신 (7월)
- (일본) 폭염, 최고기온 구마가야 41.1℃, 도쿄 40.8℃ 기록, 관측사상 최고기온 기록, 80여 명 사망 (7월)
- (미국) 폭염, 폭염주의보 발령, 최고기온 45.5°C 기록, 냉방대피소 설치, 93년만의 최고기온 기록 (7월)
- (캐나다) 동부 폭염, 89명 사망, 최고기온 37°C 기록(여름 평년기온 21°C) (7월)

가뭄·산불

- (리투아니아) 가뭄, 비상사태 선포, 농작물 수확량 최대 50% 감소, 2년 연속 이상기후 피해 (7월)
- **(그리스**) 산불, 최고 91명 사망 (7.23.~)
- (미국) 캘리포니아 산불, 서울 절반 면적 소실, 최소 5명 사망, 19명 실종, 가옥 1천여 채 소실 (7.23.~)

지진

- (이란) 규모 5.8 / 규모 5.9 지진, 주민 300여 명 부상 (7.22.~23.)
- (인도네시아) 롬복섬 규모 6.4 지진, 14명 사망, 160여 명 부상 (7.29.)