

전문역량과 미래과학기술의 접목을 통한 서비스 향상

보도자료 Press Release

배포일시 2017. 5. 23.(화) 09:30 (총 18매)

보도시점

2017. 5. 23.(화) 10:30

담당부서

대구기상지청 기후서비스과

담 당 자

과장최두수담당임수정

전화번호

053-952-0366 070-7850-2223

3개월 전망(2017년 6월~8월)

[기 온] 6월에는 평년보다 높겠고, 7월과 8월에는 평년과 비슷하거나 높겠음 [강수량] 6월과 7월에는 평년보다 적겠으나, 8월에는 평년과 비슷하겠음 [태 품] 10~12개가 발생하여 2개 정도가 우리나라에 영향을 주겠음

□ (6월) 전반에는 이동성 고기압의 영향을 주로 받아 맑고 건조한 날이 많겠음. 후반에는 고기압의 가장자리에 들거나 남쪽을 지나는 저기압의 영향으로 구름많은 날이 많겠음.

> (월평균기온) 평년보다 높겠음 (월강수량) 평년보다 적겠음

□ (7월) 고기압의 가장자리에 들거나 저기압의 영향을 주기적으로 받아 대체로 흐린 날이 많겠으며, 후반에는 점차 북태평양고기압의 영향을 받겠음.

> (월평균기온) 평년과 비슷하거나 높겠음 (월강수량) 평년과 비슷하거나 적겠음

□ (8월) 북태평양고기압의 영향으로 무더운 날이 많겠음. 대기불안정과 발달한 저기압의 영향으로 국지적으로 다소 많은 비가 내릴 때가 있겠음.

> (월평균기온) 평년과 비슷하거나 높겠음 (월강수량) 평년과 비슷하겠음

□ (엘니뇨/라니냐) 엘니뇨·라니냐 감시구역의 해수면온도는 여름철 동안 중립 상태를 유지할 것으로 전망됨.

[3개월전망(2017년 6월~8월) 요약]

<대구·경상북도 월별 평균기온 및 강수량 평년값과 평년 비슷 범위 기준표>

월별		6월		7월	8월		
요소	평년 명년 비슷 범위		평년	평년 비슷 범위	평년 평년 비슷 범위		
평균기온	21.1℃	-0.3 ~ 0.3℃	24.3℃	-0.6 ~ 0.6℃	24.9°C	-0.6 ~ 0.6°C	
강수량	137.3mm	85 ~ 115%	234.4mm	85 ~ 115%	235.3mm	85 ~ 115%	

[※] 평년기간 : 1981년~2010년

<확률예보 해석의 기준>

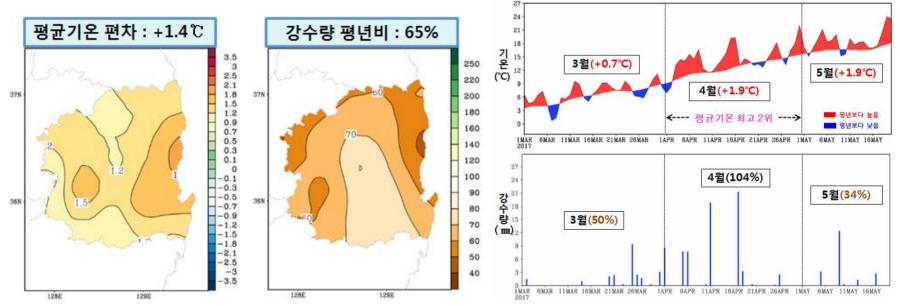
확률(낮음(적음) : 비슷 : 높음(많음))	해 설		
높음(많음) 확률이 50%이상	평년보다 높음(많음)		
(20:40:40)	평년과 비슷하거나 높음(많음)		
비슷 확률이 50%이상	평년과 비슷		
(40:30:30) (30:40:30) (30:30:40)			
(40:40:20)	평년과 비슷하거나 낮음(적음)		
낮음(적음) 확률이 50%이상	평년보다 낮음(적음)		

【 알림 】

- 3개월 전망은 "기상청 누리집→날씨→특보·예보→3개월 전망"에 게재되어 있으니 참고하시기 바랍니다.
- 다음 3개월 전망은 2017년 6월 23일 오전 10시에 발표될 예정입니다.

[※] 강수량 전망의 '평년 비슷' 범위는 평년기간 중 발생한 극값을 제외하고 산출되었습니다.

2017년 여름철 전망


목 차

- I. 봄철 기상특성
- **田. 엘니뇨/라니냐 전망**
- Ⅲ. 여름철 전망
- IV. 가을철 기후전망
- V. 최근 10년 여름철 날씨특성 및 특이기상
- VI. 태풍 전망

I. 봄철 기상특성

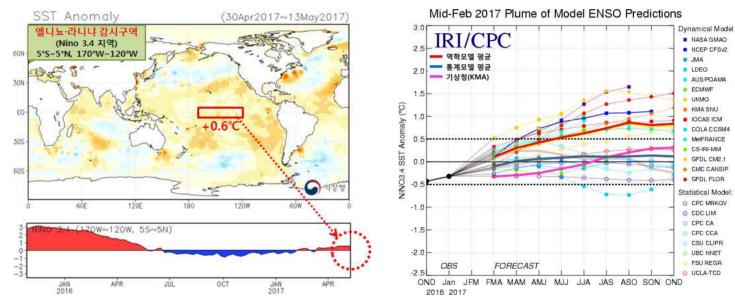
- 1. 기온과 강수량(2017.3.1.~5.20.)
- 봄철 평균기온은 12.6℃로 평년(11.2℃)보다 1.4℃ 높았음.
 - 3월 평균기온은 6.9℃로 평년(6.2℃)보다 0.7℃높았고, 4월에는 14.5℃로 평년(12.6℃)보다 1.9℃ 높았으며, 5월에는 18.6℃로 평년(16.7℃)보다 1.9℃ 높았음.
- 봄철 강수량은 115.6mm로 평년(179.3mm)대비 65%였음.
 - 3월 강수량은 24.4mm로 평년(50.6mm)보다 적었고, 4월 강수량은 71.0mm로 평년(67.9mm)과 비슷하였으며, 5월 강수량은 20.2mm로 평년(61.5mm)보다 적었음.

[그림 1] (왼쪽) 봄철 평균기온 편차와 강수량 평년비 분포도, (오른쪽) 일평균기온 편차와 일강수량 시계열(2017.3.1.~5.20.)

2. 봄철 특이기상

- (기온) 3월 주기적인 기온 변화, 4~5월 고온현상
- 3월에 이동성 고기압과 대륙고기압의 영향을 번갈아 받아 기온 변화가 주기적으로 나타났음.
- 4월에 이동성 고기압과 남서쪽에서 다가온 저기압의 영향으로 따뜻한 남서기류가 유입되어 평균기온이 평년보다 높았음.
- 5월에 남쪽에 위치한 고기압의 영향으로 남서기류가 지속적으로 유입되었으며, 맑고 건조한 가운데 강한 일사까지 더해져 평균기온이 평년보다 높았음.
 - ※ 1973년 이후 봄철(3.1.~5.20.) 대구·경북 평균기온 최고 3위, 4월 대구·경북 평균기온 최고 2위, 5월(1~20일) 대구·경북 평균 기온 최고 2위

○ (강수량) 3~5월 건조

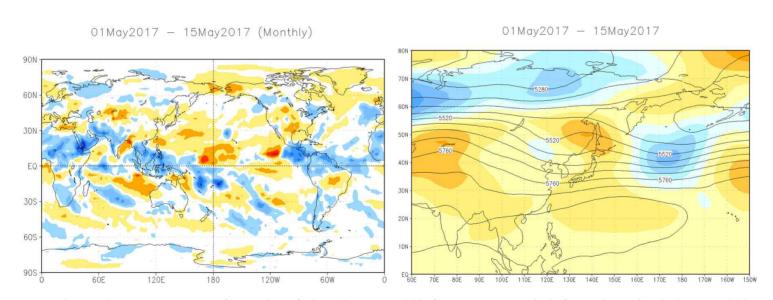

- 3월 후반에 남쪽을 지나는 저기압과 동풍의 영향으로 비가 내리기도 하였으나, 그 양이 적어 건조하였음.
- 4월 전반에 이동성 고기압이 통과한 후 그 후면으로 저기압이 우리나라를 자주 통과하여 비가 자주 내렸으나, 4월 후반~5월에는 고기압의 영향을 주로 받아 강수량이 평년보다 적었음.
 - ※ 1973년 이후 봄철(3.1.~5.20.) 대구·경북 강수량 최소 5위, 1973년 이후 5월(1~20일) 대구·경북 강수량 최소 5위

○ 황사

- 몽골과 중국 북부지방에서 발원한 황사가 북서풍을 타고 이동하여 우리나라로 유입되면서 5월 5~9일에는 전국에 황사가 관측되었음.

Ⅱ. 엘니뇨/라니냐 전망

- 엘니뇨·라니냐 감시구역(Nino3.4, 5°S~5°N, 170°W~120°W)의 해수면온도는 최근(2017.4.30.~5.13.)에 평년보다 0.6℃ 높은 상태를 보이고 있음.
- 엘니뇨·라니냐 감시구역의 해수면온도는 여름철동안 중립 상태를 유지할 것으로 전망됨.

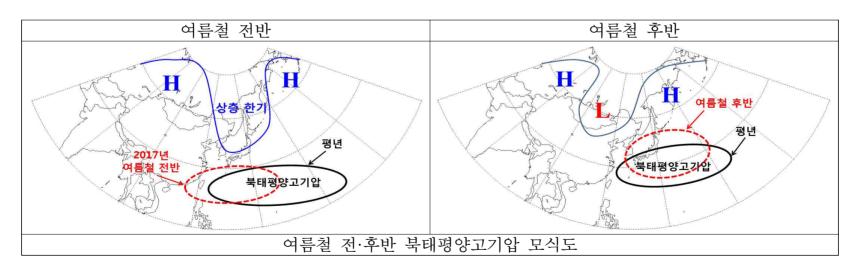


[그림 2] (왼쪽) 엘니뇨·라니냐 감시구역의 최근(4.30.~5.13.) 해수면온도 편차, (오른쪽) 세계 각국의 엘니뇨·라니냐 예측 결과(출처 : IRI)

- ※ 최근 엘니뇨·라니냐 감시구역 해수면온도 편차 현황 : 2017년 2월 -0.3℃, 3월 +0.1℃, 4월 +0.4℃(ERSSTv4)
- ※ 엘니뇨(라니냐) 정의 : 엘니뇨·라니냐 감시구역(열대 태평양 Nino3.4 지역 : 5°S~5°N, 170°W~120°W)의 3개월 이동평균한 해수면온도 편차가 +0.5℃ 이상(-0.5℃ 이하)으로 5개월 이상 지속될 때 그 첫 달을 엘니뇨(라니냐)의 시작으로 봄(2016.12.23.부터 적용)

※ 열대 해수면온도 및 대류활동 현황(5.1.~15.)

- (해수면온도) 엘니뇨·라니냐 감시구역뿐만 아니라 열대부근 전반에 걸쳐 평년보다 높은 해수면온도 분포를 보이고 있음.
- (대류활동) 열대 서태평양에서 평년보다 높은 해수면온도로 대류활동이 활발한 상태를 보이고 있으며, 필리핀 해 부근으로는 대류활동이 억제된 상태를 보이고 있음.
- (대기반응) 필리핀 해 부근에 고기압성 순환이 나타나고 있음.



[그림 3] 최근(5.1.~5.15.) (왼쪽) 지구장파복사(OLR) 편차와 (오른쪽) 동아시아 500hPa의 지위고도 편차

Ⅲ. 여름철전망

1. 기후감시 및 분석

- 북태평양고기압
 - □ (전반) 열대 서태평양의 대류활동이 강한 상태가 유지되겠으나, 우리나라 북쪽으로 상층골이 다소 강화됨에 따라 북태평양고기압은 주로 동서로 확장하는 경향을 보이는 가운데 우리나라는 이동성 고기압의 영향을 주로 받겠음.
 - □ (후반) 캄차카 반도 부근으로 기압능이 발달할 가능성이 높아 북태평양고기압이 점차 북쪽으로 확장하면서□ 가장자리를 따라 남서류가 우리나라로 유입되겠음.

○ (과거 경향) 1973~2016년 기간 동안 여름철 강수와 기온 경향을 살펴보면, 강수는 뚜렷한 경향성이 없으나, 기온은 증가하는 경향성이 있으며, 특히 6월의 기온 증가 경향성이 뚜렷함.

2. 여름철 전망

[기 온] 6월에는 평년보다 높겠고, 7월과 8월에는 평년과 비슷하거나 높겠음 [강수량] 6월과 7월에는 평년보다 적겠으나, 8월에는 평년과 비슷하겠음

[표 1] 3개월 전망(2017년 6~8월) 요약

○ 날씨전망

- 6월: 전반에는 이동성 고기압의 영향을 주로 받아 맑고 건조한 날이 많겠음. 후반에는 고기압의 가장자리에 들거나 남쪽을 지나는 저기압의 영향으로 구름많은 날이 많겠음.

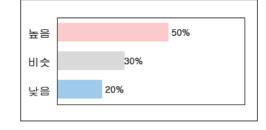
> (월평균기온) 평년보다 높겠음 (월강수량) 평년보다 적겠음

- 7월 : 고기압의 가장자리에 들거나 저기압의 영향을 주기적으로 받아 대체로 흐린 날이 많겠으며, 후반에는 점차 북태평양고기압의 영향을 받겠음.

(월평균기온) 평년과 비슷하거나 높겠음 (월강수량) 평년과 비슷하거나 적겠음

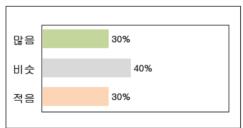
- 8월 : 북태평양고기압의 영향으로 무더운 날이 많겠음. 대기 불안정과 발달한 저기압의 영향으로 국지적으로 다소 많은 비가 내릴 때가 있겠음.

(월평균기온) 평년과 비슷하거나 높겠음

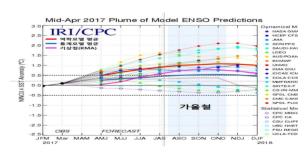

(월강수량) 평년과 비슷하겠음

Ⅳ. 2017년 가을철 기후전망

- 기온은 평년보다 높겠고, 강수량은 평년과 비슷할 것으로 전망됨
- 엘니뇨 감시구역의 해수면온도는 중립 상태를 유지하거나 약한 엘니뇨로 발달할 가능성이 있겠음


1. 기온 전망

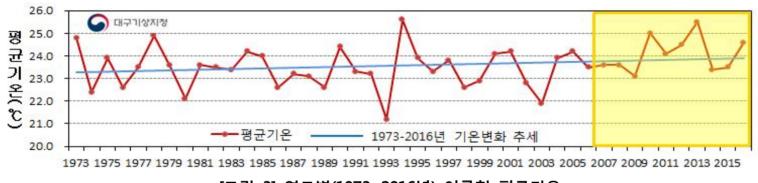
평년(14.1℃)보다 높겠음. 이동성 고기압의 영향을 주로 받아 낮과 밤의 기온차가 크겠으며, 후반에는 일시적으로 대륙고기압의 영향을 받을 때가 있겠음.


2. 강수량 전망

평년(259.7mm)과 비슷하겠음. 전반에는 평년보다 강수량이 적겠으나, 대기불안정과 발달한 저기압의 영향을 받을 때가 있겠으며, 후반에는 저기압의 영향을 주기적으로 받아 평년보다 강수량이 많은 경향을 보이겠음.

3. 엘니뇨·라니냐 전망

엘니뇨 감시구역의 해수면온도는 중립 상태를 유지하거나 약한 엘니뇨로 발달할 가능성이 있겠음.


- ※ 가을철에 대한 3개월 전망(2017년 9월~11월)은 2017년 8월 23일에 발표 예정입니다.
- ※ 참고사항: 기후전망은 계절에 관한 평균상태를 3분위(낮음/적음, 비슷, 높음/많음)로 구분하여 단계별 발생 가능성을 백분율로 산출함. 백분율이 33.3% 이상일 경우 해당 단계의 발생 가능성이 상대적으로 높다는 의미임.

V. 최근 10년(2007~2016년) 여름철 날씨특성 및 특이기상

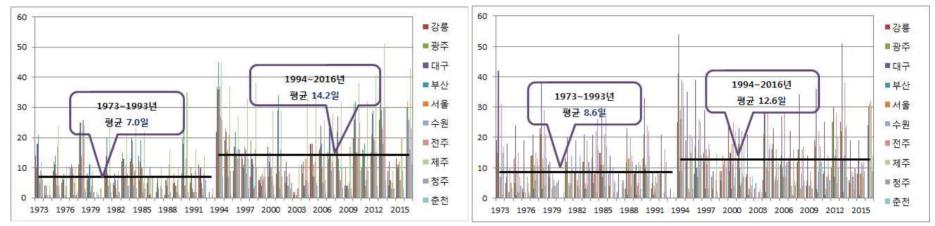
1. 기온과 강수량 특성

○ 기온

최근 10년 여름철 평균기온은 24.1℃로 평년(23.5℃)보다 0.6℃ 높았음.

[그림 3] 연도별(1973~2016년) 여름철 평균기온

○ 강수량


최근 10년 여름철 강수량은 517.1mm로 평년(607.0mm) 대비 85%를 기록하였음.

[그림 4] 연도별(1973~2016년) 여름철 강수량

○ 열대야1) 및 폭염2) 일수

※ 1994년 이후(1994~2016년) 열대야 및 폭염 일수는 1994년 이전(1973~1993년)에 비해 크게 증가하였음.

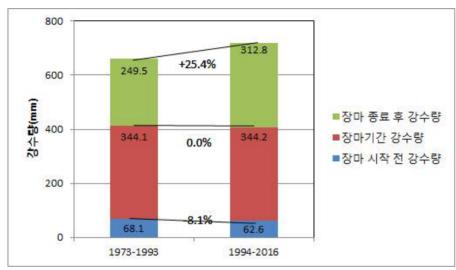
[그림 5] 주요 10개 도시 1973년 이후 (왼쪽) 연도별 열대야 일수, (오른쪽) 연도별 폭염 일수

[표 2] 최근 10년 월별 평균 기후값

기후 요소	단위	6월	7월	8월	
평균기온(평년편차)	°C	21.7(+0.6)	25.0(+0.7)	25.4(+0.5)	
평균 최고 / 최저 기온	°C	27.1 / 17.0	29.7 / 21.4	30.2 / 21.7	
강수량 / 강수일수	mm / 일	103.5 / 9.8	207.9 / 14.8	205.8 / 14.3	
일조시간	시간	178.4	150.4	166.3	
열대야 일수	일	0.0	3.2	4.7	
폭염 일수	일	0.6	4.0	7.0	

[※] 기온·강수량은 9개 지점(대구, 포항, 울진, 영주, 문경, 영덕, 의성, 구미, 영천) 평균임

[※] 열대야 및 폭염일수는 주요 10개 도시(강릉, 광주, 대구, 부산, 서울, 수원, 전주, 제주, 청주, 춘천) 평균임


[※] 최근 10년: 2007~2016년, 평년기간: 1981~2010년

¹⁾ 열대야 일수: 당일 저녁 18시부터 익일 아침 09시 중의 최저기온이 25℃이상인 일수

²⁾ 폭염 일수: 일 최고기온이 33℃이상인 일수

2. 여름철 강수량 변화

○ 1994년 이후(1994~2016년) 여름철 강수량이 1994년 이전(1973~1993년)에 비해 8.8% 증가하였으며, 특히 장마 종료 후 강수량이 25.4% 증가하였음.

[표 3] 여름철 강수량 변화

장마 기간 장마 시작 전 장마 종료 후 여름철 1973-1993 68.1 344.1 249.5 661.7 1994-2016 62.6 344.2 312.8 719.6 0.0 변화율(%) -8.1+25.4 +8.8

[단위: mm]

[그림 6] 여름철 강수량 변화

[표 4] 평년 장마기간 및 강수량

지역 3)	시작일	종료일	기간(일)	평균 강수량(mm)
중부지방	6.24~25	7.24~25	32	366.4
남부지방	6.23	7.23~24	32	348.6
제 주 도	6.19~20	7.20~21	32	398.6

※ 전국 평균 강수량 : 356.1mm

³⁾ 중부지방 19개, 남부지방 26개, 제주도 2개, 전국 45개 평균

3. 특이기상 및 영향

- 고온 현상
- (2016년 6~8월)
 - ·1973년 이래로 평균기온과 평균 최저기온이 여섯 번째로, 평균 최고기온이 다섯 번째로 높았고, 폭염일수는 네 번째로 많았음

(**편차(℃)** : 평균기온 +1.1[1위 1994년 +2.1], 평균 최저기온 +0.9[1위 2013년 +2.0], 평균 최고기온 +1.5[1위 1994년 +2.9])/폭염일수 : 23.9[1위 1994년 37.7])

- · 북태평양고기압이 발달하면서 한반도 주변 기압계 흐름이 정체되고 있는 가운데 중국으로부터 뜨거운 공기가 한반도 상공으로 유입되었고, 강한 일사가 더해지면서 기온이 큰 폭으로 올라 극심한 무더위가 지속되었음
- ·온열질환자가 2,125명(사망 17명)으로, 2011년 공식집계를 한 이후 최대 발생
- (2015년 7월 21~31일)
 - 열대야가 나타났음(열대야 발생일 : 26~30일 포항, 대구)
 - ·제12호 태풍 '할롤라'가 북상하면서 북태평양고기압을 밀어 올려 장마전선이 활성화되었고, 고온다습한 남서류가 유입되어 열대야가 나타났음
- (2013년 6~7월)
 - ·6월에는 고온 현상이 나타나고, 7월에는 평균 최저기온이 1973년 이래 두 번째로 높았음 (평균 최저기온 편차(℃): 6~7월 +2.1, 7월 +2.3[1위 1994 +2.8])
 - ·6월에는 고기압의 영향으로 맑은 가운데 강한 일사와 남서류가 유입되었으며, 7월에는 북태평양고기압의 영향으로 무더운 날이 지속되었음
- (2010년 8월)
 - · 평균 최저기온이 1973년 이래 가장 높았음(편차(℃) : 평균 최저기온 +2.4)
 - ·북태평양고기압의 가장자리를 따라 남서류가 유입되어 열대야가 자주 나타났음
- (2008년 7월 1~20일)
 - · 평균 최고기온이 1973년 이래 세 번째로 높았음(편차(℃) : 평균 최고기온 +3.6[1위 1994년 +6.1])
 - · 북태평양고기압의 영향으로 무덥고 습한 날씨가 지속되었음

○ 저온 현상

- (2014년 8월)
 - ·최고기온이 오르지 않으면서, 평균 최고기온이 1973년 이래 다섯 번째로 낮았음 (평균최고기온 편차(℃): -2.3[1위 1980년 -4.5])
 - ·전반에는 두 차례의 태풍 영향, 후반에는 상공에 찬 공기가 유입된 가운데 저기압의 영향으로 흐리고 비가 오는 날이 많았음
- (2009년 7월 21~31일)
 - 평균기온과 평균 최저기온이 1973년 이래 네 번째로 낮았음 (편차(℃): 평균기온 - 3.2[1위 1988년 - 4.6], 평균 최저기온 -2.3[1위 1993년 -3.7])
 - · 오호츠크해고기압이 확장하면서 북동류가 유입되고 한기가 남하 하면서 저온 현상이 나타났음
 - •해수욕객이 줄고, 농작물의 생육지연이 일부 나타났음

○ 건조 및 가뭄

- (2016년 8월)
 - ·1973년 이래로 대구·경북 강수량이 최소 6위를 기록하였음(8월 강수량(Ⅲ): 64.1 [1위 2001년 57.2])
 - · 북태평양 고기압 및 중국 대륙의 고기압의 영향을 지속적으로 받아 강수량이 적었음
- (2013년 7~8월)
 - ·남부 일부 지역에 가뭄 현상이 나타났음(영덕 강수량 127.5mm[평년대비 32%])
 - ·남부지방까지 확장한 북태평양고기압의 영향으로 남부 일부 지역에는 비가 거의 내리지 않았음
 - ㆍ생활용수의 제한급수 및 농작물 고사 등의 피해가 발생하였음

○ 태풍과 많은 비

- (2015년 7월 11~13일)
 - •11~13일에 제주도와 남부지방을 중심으로 강한 바람과 함께 비가 내렸음
 - ·제9호 태풍 '찬홈'의 영향을 받았음

- (2014년 8월)
- · 강수일수가 1973년 이래 첫 번째로 많았음 (8월 강수일수(일): 20.0[1위], 일강수량(皿)[8월 극값]: 21일 울릉도 124.5[2위], 25일 상주 90.1[5위])
- · 중순부터 연해주 부근에 상층 기압능이 발달하여 차고 건조한 공기가 남하하였고, 북태평양고기압 가장자리를 따라 고온 다습한 공기가 수렴되면서 국지적으로 강한 비가 자주 내렸음
- (2013년 7월 11~23일)
 - · 두 차례 집중호우가 나타났음(11~18일 누적강수량(mm) : 울진 110.0 등)
 - 산사태가 발생하여 600억여 원의 피해가 발생하고, 1명이 사망하였음
- (2012년 8월 25~30일)
 - · 전국에 강한 바람(최대순간풍속(%) [8월 극값 1위] : 28일 의성 17.1)과 함께 많은 비가 내렸음
 - ·제14호 태풍 '덴빈'과 제15호 태풍 '볼라벤'이 연달아 상륙하였음
 - •5명이 사망하였고, 6400억여 원의 재산피해가 발생하였음
- (2011년 7월 9~10일)
 - ·남부지방을 중심으로 많은 비가 내렸음(9~10일 누적강수량(m): 대구 290.0, 영천 220.0, 구미 179.5, 의성 150.5, 포항 142.5 등)
 - ·장마전선의 영향으로 많은 비가 내렸음
 - 9명이 사망하고, 1350억여 원의 재산피해가 발생하였음
- (2011년 6월 25~26일)
 - ·강한 바람과 함께 동해안지방을 중심으로 많은 비가 내렸음(25~26일 누적강수량(mm) : 울진 161.0, 포항 151.0 등)
 - •제5호 태풍 '메아리'가 서해안으로 북~북서진하였음
- (2010년 7월)
 - ·세 차례에 걸쳐 많은 비가 내렸음
 - 열대저압부에서 많은 수증기를 공급받아 장마전선이 활성화되었음
 - 4명이 사망하였고, 320억여 원의 재산피해가 발생하였음
- (2009년 7월)
 - ·네 차례에 걸쳐 많은 비가 내렸음
 - ·장마전선의 영향으로 많은 비가 내렸음
 - •13명이 사망하고, 2580억여 원의 재산피해가 발생하였음

VI. 태풍 전망

- 1. 태풍 활동 특징(2017.5.22.기준)
- 태풍발생 현황
- 4월까지 태풍은 1개가 발생하여 평년 수준(1.3개)을 기록함.
- 대기-해양 환경 특성
- 2017년 봄철(4월 분석 기준) 해수면온도는 평년보다 높아 태풍발생의 호조건인 반면, 대기 중층(500hPa)의 고기압(high anomaly) 편차가 태풍발생을 억제하는 양상을 보이고 있음.

(평년: 1981-2010년)

[표 5] 태풍 발생 현황(2017년 5월 22일 현재)

월	1	2	3	4	5	6	7	8	9	10	11	12	합계
평년	0.3	0.1	0.3	0.6	1.0	1.7 (0.3)	3.6 (0.9)	5.9 (1.0)	4.9 (0.7)	3.6 (0.1)	2.3	1.2	25.6(3.1)
금년	-	-	-	1(0)	-	-	-	-	-	-	-	-	1(0)

※ ()안의 숫자는 우리나라에 영향(발생일 기준)을 준 태풍 수임.

2. 2017년 여름철 태풍 전망

- 올 여름철(6~8월) 북서태평양 해역에서는 평년(1981~2010년) 수준의 태풍이 발생할 것으로 보이며, 우리나라에 영향을 주는 태풍 수도 평년 수준이 될 것으로 전망됨.
- 10~12개가 발생(평년 11.2개)하여, 2개 정도(평년 2.2개)가 우리나라에 영향을 주겠음
- 태풍의 진로는 필리핀 동쪽해상에 발생하여 주로 중국 남동부지역과 일본 동해상을 향하는 경로가 많을 것으로 예상됨.
- 한편, 엘니뇨의 발달 경향에 따라 태풍의 진로는 열대해역 동부에서 발생해 북상하는 경우가 다소 증가할 것으로 예상됨.