

2022년도 기후 및 기후변화 감시·예측정보 응용 기술개발 사업 1차 공고 사업안내서

2022. 1.

목차

│. 사업공고 1
1. 사업 개요 2
2. 연구개발과제 신청 4
3. 추진 일정8
4. 지원 기준9
5. 관련 법령 및 규정 12
□. 사업지원계획 및 과제 제안요구서13
□. 사업시원계획 및 파세 세안요구서 ····································
1. 지원계획 14
1. 지원계획 ····································
1. 지원계획 ····································
1. 지원계획

Ⅰ. 사 업 공 고

한국기상산업기술원공고 제2022 - 09호

2022년도 '기후 및 기후변화 감시 · 예측정보 응용 기술개발' 사업 1차 공고

기상청에서는 기후 감시·예측 기술 개발을 통한 기후 정보의 신뢰도를 제고하고, 기후 응용정보 생산 및 전달체계 구축을 통해 기후 정보 활용도를 증진하기 위해 「기후 및 기후변화 감시·예측정보 응용 기술개발」사업을 추진하고 있습니다. 2022년도 「기후 및 기후변화 감시·예측정보 응용 기술개발」사업을 다음과 같이 공고하오니, 사업 안내에 따라 2월 28일(월) 오후 4시까지 신청하여 주시기 바랍니다.

2022년 1월 28일 한국기상산업기술원장

1. 사업 개요

□ 공모분야

내역사업명	목적
기후예측 및 위험 대응 강화 연구	○ 가까운 미래 예측기술 개발 - 1년~10년 내 국가 물자원, 식량, 경제 및 재난 대응 정보 생산 위한 가까운 미래(1년~10년)의 예측성 평가, 원인규명, 예측인자 개발, 예측시스템의 도입·기반 구축
기후변화 대응 및 정보 생산·활용 연구	 ○ 탄소중립 기후변화 매커니즘 - 탄소중립에 따른 극한기후의 변화 메커니즘 및 주요 이상기후 현상에 대한 인위적 영향정보 제공을 위한 분석 및 탐지기술 개발 ○ 온실가스 관측 - 대기 중 탄소동위원소, 할로겐화 온실가스 등의 측정·분석기술을 개발하고 지상원격(FTS), 지상, 고층타워 등 다양한 관측자료를 이용한 온실가스 시공간 분포 산출기술 개발 ○ 기후변화 분야 자유공모과제

□ 공모방식

공모유형	내용
지정공모과제	기상청 연구개발사업에 있어 반드시 추진하여야 하는 연구개발과제를 기상청장이 지정하고, 공모에 따라 과제를 수행할 주관연구기관을 선정하는 과제
자유공모과제	자율적이고 창의적인 연구환경 조성을 위해 연구개발과제와 주관연구기관을 모두 공모에 따라 선정하는 과제

□ 지원 규모 및 분야

○ 사업명: 기후 및 기후변화 감시·예측정보 응용 기술개발

내역사업명	'22년 연구비	신규과제 추진계획	
네 탁사합성	22년 원구미	지정공모	자유공모
기후예측 및 위험 대응 강화 연구	984백만원 (2개 과제)	984백만원 (2개 과제)	-
기후변화 대응 및 정보 생산·활용 연구	1,650백만원 (5개 과제)	1,300백만원 (3개 과제)	350백만원 (2개 과제)
합 계	2,634백 만원 (7개 과제)	2,284백만원 (5개 과제)	350백만원 (2개 과제)

^{*} 자유공모과제는 '기후변화 대응 및 정보 생산·활용 연구' 분야에만 지원 가능하며, 과제당 연구비 175백만원 및 평가 결과 순위에 따라 과제 선정 예정

□ 지원금액

- ㅇ 과제별 정부출연금 지원 금액은 관련규정에 따라 차등 지원
- 지정공모과제 제안요구서(RFP) 상 총 연구비는 정부출연금 기준 금액이며, 기업참여 시 기업부담금은 참여기업 유형(9쪽 참조)에 따라 추가 부담

□ 연구기간

- ㅇ 연구기간: 과제 협약 시점 ~ 과제 종료 시점
 - * 1차년도 연구기간: 과제 협약 시점 ~ 2022. 12. 31.
- 금번 공고 과제의 연구기간은 모두 3년이며, 제안요구서(RFP) 및 개요서 참고

2. 연구개발과제 신청

□ 신청 자격

○「국가연구개발혁신법」 제2조제3호 및 동법 시행령 제2조제1항에 해당하는 기관 및 단체

「국가연구개발혁신법」

제2조(정의) 이 법에서 사용하는 용어의 뜻은 다음과 같다.

- 1.~2. (생략)
- 3. "연구개발기관"이란 다음 각 목의 기관·단체 중 국가연구개발사업을 수행하는 기관·단체를 말한다.
 - 가. 국가 또는 지방자치단체가 직접 설치하여 운영하는 연구개발기관
 - 나. 「고등교육법」 제2조에 따른 학교(이하 "대학"이라 한다)
 - 다. 「정부출연연구개발기관 등의 설립·운영 및 육성에 관한 법률」 제2조에 따른 정부출연연구개발기관
 - 라. 「과학기술분야 정부출연연구개발기관 등의 설립·운영 및 육성에 관한 법률」 제2조에 따른 과학기술분야 정부출연연구개발기관
 - 마. 「지방자치단체출연 연구원의 설립 및 운영에 관한 법률」 제2조에 따른 지방 자치단체출연 연구원
 - 바. 「특정연구개발기관 육성법」 제2조에 따른 특정연구개발기관
 - 사. 「상법」 제169조에 따른 회사
 - 아. 그 밖에 대통령령으로 정하는 기관·단체
- 4~9 (생략)

「국가연구개발혁신법 시행령」

- 제2조(연구개발기관) ①「국가연구개발혁신법」(이하 "법"이라 한다) 제2조제3호아목에서 "대통령령으로 정하는 기관·단체"란 다음 각 호의 기관·단체를 말한다.
 - 1. 「중소기업기본법」 제2조에 따른 중소기업
 - 2. 「민법」 또는 다른 법률에 따라 설립된 비영리법인
- 「기상법」 제9장제32조제1항에 해당하는 기관 및 단체
 - 「기초연구진흥 및 기술개발지원에 관한 법률」제14조의2제1항에 따라 인정 받은 기업부설연구소 및 기업의 연구개발전담부서 중 기상업무에 관련된 연구전담요원을 늘 확보하고 있는 기업부설연구소 및 기업의 연구개발전담부서

□ 신청 자격 제한

- ㅇ 다음의 경우는 지원에서 제외
 - 사업에 참여하는 자(주관연구기관, 연구책임자 등)가 접수마감일 현재 한국기상산업기술원 지원 사업 의무사항(각종 보고서 제출, 기술료 납부, 기술료 납부계획서 제출, 정산금 또는 환수금 납부 등)을 불이행하고 있는 경우
 - 사업에 참여하는 자(주관연구기관, 주관연구기관의 장, 연구책임자)가 국가 연구개발사업에 참여제한 중인 경우
 - 최종 제안요청서(RFP) 기획자는 해당 과제에 신청 제한 ※ 관련 근거: 「국가연구개발 과제 평가 표준지침(2021,12.)」
 - ※ 연구개발계획서 등 신청서류에 허위사실을 기재하거나 각종 증빙자료를 조작한 경우에도 선정 대상에서 제외하며, 선정된 후 이러한 사실이 발견되면 선정 취소, 정부출연금 환수 등의 제재 조치
- ㅇ 연구자가 수행하는 국가연구개발사업 과제 수가 아래의 각 호에 해당하는 경우
 - 연구책임자로 동시에 수행하는 과제수가 3개 초과인 경우
 - 참여연구자로 동시에 수행하는 과제수가 5개 초과인 경우
 - 단, 다음의 경우에는 해당 과제 수에서 제외
 - 신청마감일로부터 6개월 이내에 종료되는 과제
 - · 사전조사, 기획·평가 연구 또는 시험·검사·분석에 관한 연구개발과제
 - 연구개발과제의 조정 및 관리를 목적으로 하는 연구개발과제
 - 연구개발을 주목적으로 하지 않는 기반 구축 사업, 고등교육재정지원사업, 인력 양성 사업 및 학술활동사업 관련 연구개발과제
 - 법 제4조제1호에 해당하는 사업 관련 연구개발과제
 - 다음 각 목의 어느 하나에 해당하는 연구개발기관이 중소기업과 공동으로 수행하는 연구개발과제로서 과학기술정보통신부장관이 관계 중앙행정기관의 장과 협의하여 그 연구개발비를 별도로 정하는 연구개발과제 가. 법 제2조제3호나목부터 바목까지의 규정에 해당하는 연구개발기관 나. 「산업기술혁신 촉진법」 제42조에 따른 전문생산기술연구소
 - · 그 밖에 연구개발 촉진 등을 위하여 연구개발과제 수에 포함하지 않고 산정할 필요가 있어 국가과학기술자문회의의 심의를 거친 연구개발과제

- 연구기관(영리기관)이 접수 마감일까지 채무불이행 등 부실 위험이 있는 다음 중 하나에 해당하는 경우(첨부3 참고)
 - 기업의 부도, 휴·폐업
 - 세무당국에 의하여 국세, 지방세 등의 체납처분을 받은 경우
 - 민사집행법에 기하여 채무불이행자명부에 등재되거나, 은행연합회 등 신용정보 집중기관에 채무불이행자로 등록된 경우
 - 파산·회생절차·개인회생 절차의 개시 신청이 이루어진 경우
 - ※ 단, 법원의 인가를 받은 회생계획 또는 변제계획에 따른 채무변제를 정상적으로 이행하고 있는 경우 예외
 - 최근 결산 기준 자본전액잠식인 경우
 - 외부감사 기업의 경우, 최근년도 결산 감사의견이 '의견거절' 또는 '부적정'인 경우

□ 신청 기간

- 기간: 2022. 2. 14.(월)부터 2022. 2. 28.(월) 16:00까지
- □ 접수 마감일에는 전산폭주로 인하여 접수가 지연되거나 장애가 발생할 수 있으므로 가급적 마감일 1~2일전에 온라인 신청 완료 요망
- □ 신청 방법: 온라인을 통한 연구개발계획서 신청·접수
 - 사업안내서를 참고하여 연구개발계획서 등 필수 및 해당서류를 구비하여 기상청 연구관리시스템(https://rnd.kma.go.kr)을 통해 과제신청
 - □ 신청 시 구비서류는 사업안내서 참조(기상청 홈페이지(www.kma.go.kr) 및 한국기상 산업기술원 홈페이지(www.kmiti.or.kr)에서 열람가능)

□ 신청 서식 및 제출 서류

○ 제출서류는 기상청 연구관리시스템(https://rnd.kma.go.kr)에 온라인 등록

구분	제출서류	비영리기관	영리기관	비고
1	신청공문	0	0	첨부1
2	연구개발계획서	0	0	첨부2
3	신청 자격의 적정성 확인서	0	0	첨 부 3
4	가점 및 감점 사항 확인서	0	0	첨 부 4
5	연구데이터 관리계획서	0	0	첨 부5
6	개인정보 및 과세정보 제공활용동의서	0	0	첨 부6
7	연구윤리·청렴 및 보안서약서	0	0	첨 부7
8	신규참여연구자 채용 확인서	0	0	첨 부8
9	국가연구개발사업 과제 참여확인서	0	0	첨 부9
10	기업참여의사 확인서	×	0	첨부10
11	연구장비 예산 심의요청서	Δ	Δ	첨부11
12	기업부설 연구소 인가서 (기업부설연구소, 연구개발전담부서)	×	0	KOTA(한국산업기술진흥협회) 인증서 (https://www.rnd.or.kr)
13	기업을 증명할 수 있는 확인서 (중소기업확인서, 벤처기업확인서 등)	×	0	
14	기업 재무제표(2019, 2020 ,2021년)	×	0	2019, 2020, 2021년 모두 제출
15	연구개발서비스업자 신고증	×	Δ	
16	이의신청서(해당 시)	Δ	Δ	첨부12
17	재검토요청서(해당 시)	Δ	Δ	첨부13

※ 비고

- 1. ○는 필수서류. △는 해당 시 제출 서류. ×는 해당 없음
- 2. 협동과제의 경우(참고: 본과제는 공동연구과제의 형태는 지원불가/협동 과제별 각 주관연구기관형태)
 - 총괄과제 연구책임자가 [첨부2] 총괄용 계획서를 추가 제출
 - ※ 예) A기관+B기관 협동과제: 총 3개 계획서 제출(총괄용 계획서 1개, 연구(A, B) 계획서 2개)
- 3. 위탁수행과제의 경우 [첨부2]의 연구개발계획서 추가 제출
- 4. 연구장비 예산 심의요청서(해당될 경우)
 - 3천만원 이상~1억원 미만 소요되는 장비는 주관연구기관에서 [첨부11]을 작성하여 제출하고, 5억원 이상의 고가 장비를 도입하고자 하는 경우 사전 기획보고서를 한국기상산업기술원으로 제출
 - ※ 연구개발과제 평가단(전문가평가단): 3천만원 이상∼1억원 미만 연구장비 도입 시 심의
 - ※ 국가연구시설·장비심의평가단: 1억원 이상 연구장비 도입 시 심의
- 5. 비영리기관과 영리기관이 함께 구성되는 협동과제의 경우 각각의 해당 서류를 모두 제출

3. 추진 일정

□ 과제 공고 및 선정 일정

구분	일정	비고
공고	1. 28.(금) ~ 2. 28.(월) (32일간)	http://www.kmiti.or.kr http://www.kma.go.kr https://rnd.kma.go.kr
접수	2. 14.(월) ~ 2. 28.(월) (접수 마감일 16:00까지)	https://rnd.kma.go.kr
사전검토	3. 2.(수) ~ 3. 11.(금)	_
선정평가 및 지원과제 확정	3. 14.(월) ~ 3. 25.(금)	_
협약 및 사업착수	4. 1.(금)	-

^{**} 마감시간 이후 추가 접수 불가(시간엄수), 접수 마감 시까지 신청을 하지 않은 책임은 신청자에게 있으며 접수 마감일에는 전산폭주로 인하여 접수가 지연되거나 장애가 발생할 수 있으므로 <u>가급적 2~3일전</u> 신청 완료 요망

☞ 평가·선정·협약 일정은 신청 과제 수에 따라 일부 조정될 수 있음, 변경사항은 한국기상산업기술원 홈페이지(http://www.kmiti.or.kr) 또는 개별통보

□ 이의신청 접수 및 재평가 일정

이의신청 접수	이의신청 검토 및 재평가	확정 및 통보	협약
4. 4.(월) ~ 4. 15.(금)	4. 18.(월) ~ 4. 26.(화)	4. 28.(목)	5. 2.(월)

□ 이의신청은 과제의 내용평가에 한정하며, 평가위원 선정, 연구비 평가, 평가절차 관련사항 등은 제외

[※] 단독공모의 경우, 접수마감일로부터 일주일간 재공고

4. 지원 기준

□ 연구개발비 지원 기준

ㅇ 정부지원연구개발비 출연 기준

중소기업 [®] 인 경우	중견기업 [©] 인 경우	공기업 [®] 및 기타기업 [®] 경우	그 외의 경우
해당 수행기관	해당 수행기관	해당 수행기관	해당 수행기관
총사업비의 75% 이내	총사업비의 70% 이내	총사업비의 50% 이내	총사업비의 100% 이내

ㅇ 기관부담연구개발비 중 현금 부담 기준

중소기업 ^① 인 경우	중견기업 [©] 인 경우	공기업 [®] 및 기타기업 [®] 경우	그 외의 경우
해당 수행기관	해당 수행기관	해당 수행기관	해당 수행기관
민간부담금의 10% 이상	민간부담금의 13% 이상	민간부담금의 15% 이상	민간부담금의 15% 이상

- ① '중소기업'이란 「중소기업기본법」제2조제1항 및 같은 법 시행령 제3조(중소기업 범위)에 따른 기업
- ② '중견기업'이란 「중견기업 성장촉진 및 경쟁력 강화에 관한 특별법」 제2조(중견 및 중견기업 후보기업의 범위) 제1호에 따른 기업
- ③ '공기업'이란 「공공기관의 운영에 관한 법률」 제5조(공공기관의 구분)제4항제1호에 따른 기업
- ④ '기타기업'이란 중소기업, 중견기업, 공기업에 해당하지 않는 기업

'22년 코로나19에 따른 중소·중견기업 연구개발비 완화기준

※ 코로나19 위기 대응을 위한 「감염병 대응 국가연구개발사업 지원지침」 개정('21.12.29)에 따라, 2022년도 정부지원연구개발비 및 기관부담연구개발비 지원 기준을 아래와 같이 한시적으로 적용하며, 추후 코로나19의 영향 등을 고려하여 적용기간 연장 가능

기 존			
출연기준	현금부담기준		
중견기업 30%	중견기업 13%		
중소기업 25%	중소기업 10%		

→ 인 하

완 화		
출연기 준	현 금 부 담 기 준	
중견기업 30%(좌동)	중견기업 10%	
중소기업 20%	중소기업 10%(좌동)	

(적용 예) 선정된 중소기업 A의 총사업비(출연금+민간부담금)가 250,000천원일 경우, 정부로부터 지원받는 출연금은 200,000천원(총사업비의 80%)이고, 기업의 민간부담금은 50,000천원 중 현금부담은 5,000천원(민간부담금의 10%)임

□ 영리기관 인건비 산정 기준

- '국가연구개발사업 연구개발비 사용 기준'제65조(영리기관 인건비 사용기준)제4항에 따라 인건비 현금 계상 가능
 - ☞ 국가연구개발사업 연구개발비 사용기준 제65조제4항
 - ④ 영리기관의 장은 다음 각 호의 어느 하나에 해당하는 참여연구자에 대하여는 인건비를 현금으로 계상할 수 있다.
 - 1. 중소·중견기업인 연구개발기관이 신규로 채용하는 참여연구자(채용일부터 연구개발과제 공고일까지의 기간이 6개월 이내인 연구자를 포함한다)
 - 2. 연구개발성과의 전부 또는 일부를 국가의 소유로 하는 연구개발과제의 참여연구자로서 중앙행정 기관의 장이 인건비의 현금 계상이 필요하다고 인정하는 참여연구자
 - 3. 중소·중견기업인 연구개발기관이 채용한 참여연구자 중 제1호에 해당하지 아니하는 참여연구자로서 중앙행정기관의 장이 인건비의 현금 계상이 필요하다고 인정하는 참여연구자
 - 4. 대기업인 연구개발기관이 채용한 참여연구자로서 중앙행정기관의 장이 인건비의 현금 계상이 필요하다고 인정하는 참여연구자
 - 5. 그 밖에 중앙행정기관의 장이 인건비의 현금 계상이 필요하다고 인정하는 참여연구자

중앙행정기관 인정 '영리기관 기존인력 인건비' 계상 기준

- 지식서비스 분야의 개발 내용을 포함한 과제를 수행하는 중소기업의 연구자
- 단, 신청서류를 토대로 평가위원회에서 인정하지 않는 경우, 현금 산정 불가
- 「국가과학기술 경쟁력 강화를 위한 이공계지원 특별법제18조에 따라, 연구개발서비스자로 신고한 기업의 연구자
- <참고> 코로나19 위기 대응을 위한 「감염병 대응 국가연구개발사업 지원지침」 개정('21.12.29)에 따라, '22년도에 한하여 기존인력 인건비 현금 산정 가능

□ 기술료 징수 기준

- (**납부대상**) 연구개발결과물을 소유하고 실시하고자 하는 영리기관(주관연구개발기관)
- (납부방식) 주관연구개발기관은 징수한 기술료(제3자실시) 또는 발생한 사업 매출액 (직접실시)의 일부를 정부(전문기관)에 납부하여야 하며, 세부사항은 추후 과제협약을 통해 징수 예정
 - ☞ 정부납부(경상)기술료
 - ① 기술료 및 매출액이 발생한 다음 해부터 5년까지 또는 연구개발과제 종료로부터 7년 이내 중 먼저 도래하는 시점까지 납부
 - ② 납부기준은 국가연구개발혁신법 시행령 제38조(기술료의 납부) 및 제39조(연구개발성과로 인한수익의 납부)에 따르며, 구체적인 방법은 추후 알림 예정

※ 위탁정산수수료 산정

- 「한국기상산업기술원 연구개발사업 평가·관리지침」제38조에 따라 회계법인을 통한 연구개발비 위탁정산을 실시하므로, 신규과제 신청 시 연구활동비 (직접비) 내에 연구개발비 정산 수수료를 계상하여 연구개발계획서 제출
- ㅇ 연구개발비 정산수수료는 연구개발과제별로 각각 책정(위탁 포함)

<위탁정산수수료 계상기준>

사업비 규모	위탁정산수수료(부가세 포함)
0.5억원 미만	440천원
0.5억원 이상 1억원 미만	484천원
1억원 이상 2억원 미만	545천원
 2억원 이상 3억원 미만	654천원
 3억원 이상 5억원 미만	800천원
5억원 이상 10억원 미만	944천원

[※] 위탁정산 수행기관 신규 선정 등에 따른 정산 업무 변경 시 수수료 변동 가능

□ 문의처

- ㅇ 한국기상산업기술원 기술혁신본부 기반기술실 김하영
 - **3** 070-5003-5323
 - ⊠ kima74@kmiti.or.kr

5. 관련 법령 및 규정

□ 법(법령)

- 과학기술기본법 제11조(국가연구개발사업의 추진)
- 기상법 제32조(기상업무에 관한 연구개발사업의 추진)
- 기상산업진흥법 제3조(기상산업의 진흥과 발전을 위한 노력 등), 제9조(연구 개발사업의 지위 등) 및 제10조(연구개발성과의 사업화)
- ㅇ 국가연구개발혁신법
- ㅇ 국가연구개발혁신법 시행령
- o 국가연구개발혁신법 시행규칙 및 하위 규정·고사·지침
- □ 규정: 기상업무 연구개발사업 처리규정
- □ 지침: 기상업무 출연 연구개발사업 과제평가지침
 - ☞ 동 공고문에서 정하지 않은 사항은 국가연구개발혁신법 관련 법령, 규정 및 지침, 한국기상산업기술원 연구개발사업 평가·관리지침을 따름
 - ☞ 상기 규정 및 지침의 제·개정에 따른 변경사항은 평가·협약 시점 기준으로 적용

□. 사업지원계획 및과제 제안요구서

1. 지원계획(정부출연금 기준금액)

7].	후예측	및	위험	대용	강화	여구
 ′ I	1 11 -1		'' '	- 11 0	0 –	1 4 1

○ 지정공모과제: 984백만원

□ 기후변화 대응 및 정보 생산·활용 연구

지정공모과제: 1,300백만원자유공모과제: 350백만원

☞ 지원규모는 상황에 따라 변경 가능

2. 지정공모과제 목록

□ 지정공모과제

(단위: 백만원)

내역사업명	일련 번호	과제 명		'22년 연구비	총 연구기간
기후예측 및 위험 대응	1	가까운 미래 기후변동성 분석 및 원인 규명		500	3년
강화 연구	2	가까운 미래 예측 시스템 구축을 위한 기반기술 개발	양	484	3년
	3	탄소중립 기후변화 메커니즘 및 온실가스 영향 탐지 진단기술 개발	용	600	3년
기후변화 대응 및 정보 생산 활용 연구	4	배경대기 농도수준 할로겐화 온실가스 연속 측정기술 개발	양	400	3년
	5	모바일 온실가스 관측자료 활용기술 연구	96 9	300	3년

3. 지정공모과제 제안요구서(RFP)

□ 지정공모과제 제안요구서

○ 기후예측 - 1. 가까운 미래 기후변동성 분석 및 원인 규명

연구개발 과제명	가까운 미래 기후변동성 분석 및 원인 규명
	[연구목표] : 가까운 미래 예측체계 구성을 위한 이상기후 현상의 원인 규명·진단
	① 1단계 : 3년 간(2022~2024년)
	[연구목표] :
	• 가까운 미래 예측을 위한 기후변동성 원인 규명
개 요	• 가까운 미래 예측을 위한 신뢰도 평가기술 개발
	[연구내용]
	· 가까운 미래 예측을 위한 장주기 기후변동성 분석
	∘ 대기 및 해양 장주기(1년~수십년) 변동으로 인한 원격상관 과정의 과학적 기작 규명
	∘ 가까운 미래 예측을 위한 신뢰도 분석·평가기술 개발

일련번호	기후예측 - 1				
연구과제명		가까운 미래 기후변동성 분석 및 원인 규명			
세부사업명		기후 및 기후변	현화 감시·예측정5	년 응용기술 개발	-
내역사업명		기후예측	흑 및 위험 대응 공	강화 연구	
과학기술분류	ND-(06-03	기상기술분류	C-(02-02
총연구기간	3년	총연구비	15억원	연도별연구비	('22) 5억원 ('23) 5억원 ('24) 5억원
연구 필요성	매우 커지고				

	부재한 상태이며, 현 기후예측 기술력을 확장하여 계절내~가까운 미래를 아우르는 예측체계의 개발이 필요함 © 또한 가까운 미래 예측체계 개발을 위한 물리기작 규명과 신뢰도 평가기술이 선행되어야 함
연구내용 및 범위	 가까운 미래 예측을 위한 장주기 기후변동성 분석 동아시아에 영향을 미칠 수 있는 시·공간 규모(1년~수십년, 대규모/지역) 대기/해양/대양 간/대기─해양 간의 장주기 기후변동성 선정 가까운 미래 규모 장주기 기후변동성 및 주요 기작 분석 대기 및 해양 장주기(1년~수십년) 변동으로 인한 원격상관 과정의 과학적 기작 규명 가까운 미래의 장주기 기후변동(ENSO, QBO, 몬순, SST, 심해순환, 해빙 등)들 간의원격상관 분석 대기 및 해양의 장주기 기후변동으로 인한 원격상관의 역학적/물리적 과정기작 규명 가까운 미래 예측을 위한 신뢰도 분석·평가기술 개발 가까운 미래 예측을 위한 역학 모델 기반 기후변동성 진단·분석 다양한 기후 모듈 기반 가까운 미래 예측성 진단 가까운 미래 기후변동(ENSO, QBO, 몬순, SST, 심해순환, 해빙 등)의예측성평가기술 개발 역학 모델기반 시·공간 규모(1년~수십년, 대규모/지역/대양간/대기해양)간의상호관련성 분석기술 개발 가까운 미래 기후 및 극한 기후의 분석·평가 체계 개발
최종 성과물	∘ 가까운 미래(1년~10년) 기후예측성 향상 핵심기술 개발
기대성과 및 활용방안	 1년~10년 규모 기후예측 핵심기술 개발 통한 신기후체제 대응 과학적 기반 구축 기후예측을 활용한 사회기반 시설, 에너지 수급 등 사회-경제적 의사결정 지원 가까운 미래에 대한 실용적인 이상기후 예측정보 제공으로 국가 재난대응 기여 국가 재난으로부터의 국민 안전 보장을 위한 기후예측 과학정보 제공
과거유사 연구사례	∘ 과거 유사연구사례 없음 - 검색년도: 2002~2021, 기준유사도: 60, 국가과학기술지식정보서비스(NTIS)

○ 기후예측 - 2. 가까운 미래 예측시스템 구축을 위한 기반기술 개발

연구개발 과제명	가까운 미래 예측시스템 구축을 위한 기반기술 개발
개 요	[연구목표]: 가까운 미래 예측체계 구성을 위한 기술 개발 ① 1단계: 3년 간(2022~2024년) [연구목표]: • 가까운 미래 예측을 위한 기반기술 개발 • 가까운 미래 예측체계 구축을 위한 주요기술 개발 및 후처리 체계 설계 [연구내용] • 가까운 미래 예측체계 원형(prototype) 도입 및 구축 등 • 가까운 미래 극한기후 변화 예측기술 개발(모델링, 역학-통계 상세화, 최신기술 적용 등)

일련번호	기후예측 - 2					
연구과제명	7	가까운 미래 예측시스템 구축을 위한 기반기술 개발				
세부사업명		기후 및 기후변	!화 감시·예측정5	보 응용기술 개발		
내역사업명		기후예측	후 및 위험 대응 경	강화 연구		
과학기술분류	ND-(06-03	기상기술분류	C-(02-03	
총연구기간	3년	총연구비	14.84억원	연도별연구비	('22) 4.84억원 ('23) 5억원 ('24) 5억원	
연구 필요성	○ 최근 급증하는 기후변화/기상재해(대형 폭염/가뭄/한파) 예측 정보의 가치가 매우 커지고 있는 상황임 ○ 가까운 미래 예측 범위는 재난 대응과 에너지, 물, 식량 등의 국가 자원에 대한 계획뿐만 아니라, 사회 기반시설 및 국내외 안보와 직결된 사회-경제적 정책 결정을 하는데 매우 중요하면서도 시급한 예측 범위에 해당함 ○ 한반도에 막대한 피해를 가져오는 극한기후 현상(집중호우, 한파, 폭염, 가뭄, 이상수온 등)에 대한 중·장기 예측성 검증 및 사전에 대비할 수 있는 실용적 수준의 중·장기 예측기술 확보가 필요함 ○ 전 세계적으로 가까운 미래(1년~10년까지) 예측 연구에 대한 필요성이 증대되고 있으며, 최근 국제 공동연구들을 통해 해양순환 및 지면조건, 대기강제력등에 의해 수년부터 수십 년 규모의 기후예측성 존재가 제시되었음 ○ 우리나라에서는 계절규모 이상의 가까운 미래 예측을 목표로 하는 시스템이 부재한 상태이며, 현 기후예측 기술력을 확장하여 계절내~가까운 미래를 아우르는 예측체계의 개발이 필요함 ○ 또한 정성적으로 제공되는 극한기후 현상에 대한 예보를 정량적으로 제공하여 정확도를 계량화하고 불확실성이 감소된 예측기술 개발이 필요함					
연구내용 및 범위	 가까운 미래 예측시스템 구축을 위한 기반기술 개발 가까운 미래 예측체계 원형(prototype) 도입 및 구축 가까운 미래 예측을 위한 초기화 기법 및 기후 강제력 개발 					

	- 가까운 미래 예측시스템의 기후표류 완화를 위한 기술 개발 - 민감도 변화 및 모의 수준/불확실성 평가기술 개발 • 가까운 미래 예측체계 구축을 위한 주요기술 개발 및 후처리 체계 설계 - 가까운 미래 극한기후 변화 예측기술 개발(모델링, 역학-통계 상세화, 최신기술 적용 등) - 가까운 미래 극한기후 확률 예측을 위한 앙상블 활용 기법 개발 - 가까운 미래 예측시스템 최적화 및 동아시아-한반도 재현 성능 개선 - 가까운 미래 기후예측 후처리 체계 설계
최종 성과물	• 가까운 미래(1년~10년) 기후예측성 향상 핵심기술 개발 및 서비스 체계 구축
기대성과 및 활용방안	 가까운 미래 규모 예측시스템 자체 운영 및 활용 기술력 확보 기후 예측을 활용한 사회기반 시설, 에너지 수급 등 사회-경제적 의시결정 지원 가까운 미래에 대한 실용적인 이상기후 예측정보 제공으로 국가 재난대응 기여 국가 재난으로부터의 국민 안전 보장을 위한 기후예측 과학정보 제공
과거유사 연구사례	∘ 과거 유사연구사례 없음 - 검색년도: 2002~2021, 기준유사도: 60, 국가과학기술지식정보서비스(NTIS)

○ 기후변화 - 1. 탄소중립 기후변화 메커니즘 및 온실가스 영향 탐지·진단기술 개발

연구개발 과제명	탄소중립 기후변화 메커니즘 및 온실가스 영향 탐지·진단기술 개발
개 요	[연구목표] : 탄소중립 기후변화 메커니즘 및 온실가스 영향 탐지·진단기술 개발 ① 1단계 : 3년 간(2022~2024년) [연구목표] : 1차년도: CMIP6 온실가스 감축 실험자료를 활용한 한반도 극한기후 변화 메커니즘 분석 및 이상기후의 인위적 영향탐지 기법 조사와 실험체계 설계 2차년도: 탄소중립 감축목표/경로를 따르는 미래 전망 자료 활용 극한기후 변화 메커니즘의 분석과 이상기후의 인위적 영향탐지 실험체계 구축 3차년도: 탄소중립에 따른 극한현상의 재현 주기 등 분석 정보 산출과 주요 이상기후 현상에 대한 인위적 영향탐지 테스트 수행 [연구내용] 한소중립에 따른 동아시아 극한기후 메커니즘 분석 이상기후 현상의 인위적 영향 탐지기법(Event Attribution) 개발 및 진단

일련번호	기후변화 - 1				
연구과제명	탄소중립	기후변화 메커니	니즘 및 온실가스	. 영향 탐지·진딘	기술 개발
세부사업명		기후 및 기후변	!화 감시·예측정도	브 응용기술 개발	_
내역사업명		기후변화 [내응 및 정보 생선	난·활용 연구	
과학기술분류	ND-(06-04	기상기술분류	C-01-02	
총연구기간	3년 총연구비		18억원	연도별연구비	('22) 6억원 ('23) 6억원 ('24) 6억원
연구 필요성	○ 다양한 온실가스 감축 경로에 대한 극한기후의 변화와 메커니즘 이해 ○ 이상기후 현상의 인위적 영향 탐지(Event Attribution) 기술 확보				
연구내용 및 범위	- 국제표준 2 (NIMS) 탄: 및 동아시여 - 폭염, 한파, 상세 분석 - 과거·미래 재현 주기 이상기후 현 - 영국, 일본 조사를 통합				

	이상기후 현상의 인위적 영향탐지를 위한 인덱스 추출 기법 개발 - 최근의 주요 이상기후 현상에 대한 영향탐지 테스트 수행 및 평가
최종 성과물	· 이상기후 현상의 불확실성 평가기술 및 탐지기술 개발
기대성과 및 활용방안	 국정과제, 제3차 기후변화 적응대책 등과 연계, 다양한 정보 및 자료 제공으로 지자체, 정부부처 국가 정책 수립 이행에 기여 신기후체제 및 탄소중립 대응, 다양한 기후변화 정보 산출기술 고도화 탄소중립에 따른 극한기후의 변화 메커니즘 정보 제공 및 연도별 주요 이상 기후 현상에 대한 인위적 영향의 탐지 정보 제공으로 국민 이해 확대
과거유사 연구사례	 ○ 온실가스 증가로 인한 한반도 주변의 기후변화 탐지 (기상연구소 권원태, 2001.10.30. ~ 2003.06.30.) ─ 지역 기후변화 탐지기술을 이용한 한반도 기후변화 탐지, 기후변화 장기시나리오 생산 및 동아시아 기후변화 전망 ─ 기후변화 원인별 정량화 및 유의성 검증 ─ 본 연구개발과 차별성: IPCC SRES A2, B2 시나리오 자료 비교를 통한 온실가스 저감효과 분석 및 동아시아 기온, 강수에 관한 기후변화 전망

○ 기후변화 - 2. 배경대기 농도수준 할로겐화 온실가스 연속 측정기술 개발

연구개발 과제명	배경대기 농도수준 할로겐화 온실가스 연속 측정기술 개발
개 요	[연구목표]: 배경대기 농도수준 할로겐화 온실가스 연속 측정기술 개발 ① 1단계: 3년 간(2022~2024년) [연구목표]: ○ 1차년도: 탈부착 극저온 농축장치 성능 고도화 ○ 2차년도: 표준가스 생산기법 및 검교정기법 개발 ○ 3차년도: 현장 운용기법 개발 및 적용 [연구내용] ○ 배경대기 농도수준 CFC 및 할로겐화 온실가스 농축장치 성능 고도화 ○ 할로겐화 온실가스 측정을 위한 표준가스 생산 및 검교정기법 개발 ○ 할로겐화 온실가스 측정기술 현장 적용을 위한 운용기법 개발

일련번호	기후변화 - 2				
연구과제명	배경대기 농도수준 할로겐화 온실가스 연속 측정기술 개발				
세부사업명		기후 및 기후변	!화 감시·예측정5	보 응용기술 개발	_
내역사업명		기후변화 [내응 및 정보 생긴	난·활용 연구	
과학기술분류	ND-(04-08	기상기술 분류	C-(01-02
총연구기간	3년	총연구비	12억원	연도별연구비	('22) 4억원 ('23) 4억원 ('24) 4억원
연구 필요성	 교토의정서에 의해 배출이 규제되고 있는 PFCs, HFCs의 배경대기 농도가 전지구적으로 지속 증가하고 있음. 특히, 국내적으로는 산업구조적 특성에 의해 NF3의 생산량 및 배출량이 지속 증가 추세에 있지만 이의 관측 업무는 아직 이루어지고 있지 않음 배경대기 중에서 pmol/mol 수준으로 존재하는 할로겐화 온실가스류, 특히 HFCs는 전통적 측정 장치로의 측정이 불가능하거나 정량적 측정이 매우 어려움 최소 15종 이상의 할로겐화 온실가스에 대한 국제적 표준이 확립되어 있지 않아 극미량 다종 혼합가스의 표준물질에 대한 검교정 기법 필요 				
연구내용 및 범위	• 1차년도: 탈부착 극저온 농축장치 성능 고도화 - GC-AED 및 냉동기 사용을 통한 배경대기 농도 수준 CFC 3종과 할로겐화 온실가스 3종 이상 등의 측정 능력 확보 및 실험실 표준물질 고도화 - 농축장치의 열적/기계적 강성 제고를 위한 트랩 개발 - 냉각부 성능 개선 - 자동화 운용을 위한 통합 제어 프로그램, GUI 및 전자 제어부 개발 (온도, 유속, 압력 제어 기능 탑재)				

	2차년도: 표준개발 및 검교정기법 개발농축장치 측정 정밀성 고도화 및 장기 운용 안정성 확보를 위한 흡착 트랩 디자인 개선
	- working standard 및 실험실 환경에서 장기 운용성 평가 - 건조 공기 시료 흡입부 개발 및 측정 장치 연동 및 측정조건 최적화 - 배경대기 관측에 대한 장기 운용성 평가
	- C, F, Br, CI의 당량에 감도 결정 기법 개발 및 다종 혼합가스 확대 적용할 수 있는 교정 기법 개발
	- 건조공기 시료 활용한 교정용 실험실 표준 개발 및 이를 이용한 precon-GC-MSD 교정 기법 개발
	 3차년도: 현장 운용기법 개발 및 적용 현장 운영 시스템 (precon-GC-MSD)의 현업 운용 개발 및 적용 선진 기관 자료과 자료 비교 및 농도 산출 기법 연구 현업 문제점을 통한 현장 운영시스템 고도화 및 개선
	- 개발 장치 운영 매뉴얼 및 교육훈련 제공 - 현업화 인증/추진 및 개발 시스템 납품 및 MSD와의 연동
최종 성과물	· 할로겐화 온실가스의 표준물질에 대한 검교정 기술 개발
기대성과 및 활용방안	○ 극저온 농축장치 시제품을 이용한 GC-MS 통합 측정 장치를 통한 HFCs, PFCS 등의 관측자료 실시간 확보 ○ 다종의 할로겐화 온실가스 동시 측정을 위한 표준가스 생산
2000	· 국내외 할로카본 배출량 산정 연구에 활용
과거유사 연구사례	○ 온실가스 동위원소 유출입 감시를 위한 연속추적 기술 개발 (한국표준과학연구원, 2021.04.01. 〜 2023.12.30.) - 이산화탄소 안정동위원소 분석기술을 개발 및 대기중 탄소 동위원소(실시간) 측정기반 구축 - 메탄 안정동위원소 표준물질을 개발하여 대기 중 탄소 동위원소 CRDS
건 T 가[네	연속측정 기반 구축 - 본 연구개발과 차별성: 위의 사업은 동위원소에만 국한되어 있으며, 극미량으로 존재하면서 인위적으로만 배출되는 할로카본 등 교토의정서 제한 물질의 실시간 관측을 위한 연구가 필요

○ 기후변화 - 3. 모바일 온실가스 관측자료 활용기술 연구

연구개발 과제명	모바일 온실가스 관측자료 활용기술 연구
개 요	[연구목표] : 온실가스의 고도별 강도 분석 및 정량화기술 개발 ① 1단계 : 3년 간(2022~2024년) [연구목표] : • 1차년도: 흡수스펙트럼 자료를 통한 온실가스 입체감시 검증기술 개발 • 2차년도: 흡수스펙트럼 자료의 온실가스 시공간 분포 및 상대 강도 분석기술 연구 • 3차년도: 기후변화 원인물질의 위치에 따른 상대 강도 분석 및 정량화 기술개발
	[연구내용]

일련번호	기후변화 - 3				
연구과제명		모바일 온실가스 관측자료 활용기술 연구			
세부사업명		기후 및 기후변	l화 감시·예측정도	브 응용기술 개발	
내역사업명		기후변화 [내응 및 정보 생선	난·활용 연구	
과학기술분류	ND-(04-08	기상기술분류	C-(01-02
총연구기간	3년 총연구비		12억원	연도별연구비	('22) 3억원 ('23) 4억원 ('24) 5억원
연구 필요성					
연구내용 및 범위	- 관측장비 흡 - 국제 관측당 - 흡수스펙트 • 2차년도: 온 - 온실가스 7 - 배경흡수리 (딥러닝(de - 온실가스 7	통한 기후변화 분석역량 향상 1차년도: 흡수스펙트럼 자료를 통한 온실가스 입체감시 검증기술 개발 - 관측장비 흡수스펙트럼 검증 및 안정화 기법(기술) 개발 - 국제 관측망(COCCON) 분광학 분석기법 적용 및 개선 - 흡수스펙트럼의 흡수선 특성변화 및 배경흡수라인 규정 2차년도: 온실가스 전량농도 시공간 분포 및 상대강도 분석기술 연구 - 온실가스 전량농도 산출 및 처리 체계 구축 - 배경흡수라인의 흡수스펙트럼 특성 및 시공간 분포 영향분석 연구 (딥러닝(deep learning)기술적용 및 활용) - 온실가스 전량농도의 시공간 분포 경향(대기 경계층) 및 상대강도 연구 3차년도: 기후변화 원인(온실가스)의 지역별 특성 및 정량화 기술개발 - 온실가스 전량농도의 지역(도심, 비도심)별 특성정보 연구			
최종 성과물	• 온실가스의 기	지역별 강도 분석	및 정량화 기술	개발	

기대성과 및 활용 방안	○ 딥러닝(deep learning) 기반의 분석기술 개발에 따른 신기후체제에 대한 기후변화 대비 및 예측기술 확보 ○ 기후변화 감시·예측 기술 역량 향상을 통한 고품질 기후변화 영향성 검증 정보 생산 및 제공
과거유사	∘ 과거 유사연구사례 없음
연구사례	- 검색년도: 2002~2021, 기준유사도: 60, 국가과학기술지식정보서비스(NTIS)

Ⅲ. 연구개발과제 선정 평가

1. 평가 구성·운영 및 선정 절차

□ 전문가 평가 및 총괄조정위원회

- 0 기능
 - 전문가 평가
 - 발표 심사를 통해 사업의 분야별 지원과제 우선순위 선정
 - 총괄조정위원회
 - 분야별 전문가평가의 평가결과. 사업비 등을 종합 검토하여 총괄조정
- ㅇ 전문가 평가. 위원회 구성 방법 및 원칙
 - 전문가 평가
 - '평가위원 후보단'에서 과제신청자 등 이해관계자를 제외한 후 후보위원을 선정
 - 후보위원 우선순위에 따라 본인 의사를 확인하여 확정하되, 산·학·연·관 전문가로 평가단을 구성
 - 전문가 평가단은 7인 이상의 전문가로 구성
 - 총괄조정위원회
 - · 기상청장은 연구개발과제 평가를 총괄하여 조정·심의하기 위하여 총괄조정 위원회를 구성·운영

□ 선정 절차

- ㅇ 선정 절차 내용
 - 객관성·투명성을 확보하기 위해 기술원에서 사전검토 후 분야별 전문가 평가를 거쳐 총괄조정위원회에서 심의·조정

<선정 절차도>

선정 평가

연구개발계획서 제출	
연구기관	

→	사전검토	전문가 평가	총괄검토·조정	평가결과 확정
	한국기상산업 기술원	전문가 평가단	총괄조정위원회	기상청

- ㅇ 선정 절차 세부 내용
 - 사전검토
 - 신청자격의 적합여부, 연구개발계획서 및 첨부 서류의 적정여부 검토 등
 - 전문가 평가(발표·패널 평가)
 - 연구책임자의 발표 및 질의응답을 평가
 - · 연구개발의 필요성, 연구 계획의 적합성·활용가능성, 추진 전략 및 체계의 합리성, 연구인력 및 시설의 우수성 등 평가
 - · 평가결과 점수가 70점 이상인 과제를 선정하는 것을 원칙으로 하되, 예산의 범위 내에서 평가 점수 고득점자 순으로 선정
 - · 평가결과 평가점수가 높은 과제부터 우선 선정되며, 선정평가 결과와 지원 예산의 규모 등을 고려하여 연구비 조정 가능
 - · 최고점과 최저점을 제외한 분야별「전문가 평가」의 평가점수를 산술 평균하여 70점 미만 과제는 탈락시키고, 70점 이상 과제를 대상으로 가점 및 감점을 산정하여 그 종합평가점수에 따라 순위를 결정
 - · 평가결과 평균 70점 이상인 과제임에도 불구하고 평가위원 2인 이상이 70점 미만으로 평가한 과제는 탈락 조치
 - 3천만원 이상 소요되는 장비 구매 시 연구장비도입심사 평가
 - 연구개발계획서 작성 시 보안등급으로 분류한 과제는 보안 적절성 평가
 - 평가 항목: 「한국기상산업기술원 연구개발사업 평가·관리지침」기초·응용 단계 기준

	평가항목	배점	
연구개발의 필요성	연구개발의 필요성 RFP와의 부합성(지정공모)		
	연구 목표의 타당성 및 달성가능성		
연구 계획의	기존기술과의 차별성	ΛE	
적합성·활용가능성	실용화·정책 활용 가능성 및 파급효과(총괄과제)	45	
	연구성과 활용 가능성 및 파급효과(단위과제)		
	총괄과제와 세부과제 구성의 적합성 / 참여기관간의 역할분담의		
추진 전략 및	적합성(총괄과제)	00	
체계의 합리성	연구개발추진 전략 및 수행방법(단위과제)	20	
	연구비 구성의 적합성		
어그이램 미	총괄책임자와 연구참여자의 연구역량 및 총괄능력(총괄과제)		
연구인력 및	연구책임자 및 참여자의 연구역량(단위과제)	25	
시설의 우수성	연구시설 현황 및 확보		

- ※ 상세 평가항목은 「한국기상산업기술원 연구개발사업 평가·관리지침」 참조
- ※ 과제별 성과지표 설정 시 전체 성과지표 중 질적지표 50% 이상 설정(31쪽 참조)

- 한국기상산업기술원 조정
 - 전문가 평가결과를 토대로 연구개발 계획 조정
 - * 선행 유사 연구개발과제와의 연계성 등 연구내용·추진체계 검토
 - * 연구성과 향상 방안 및 정책 연계성 검토
 - * 가·감점 사항 및 적정 연구개발비 검토
 - * 연구개발비 편성의 적정성
 - * 연구책임자 중복참여, 참여연구자의 역할 등
 - 종합평가점수에 따라 우선순위를 산정하여, 지원검토 및 예비 후보과제 분류
- 총괄 조정
 - 전문가 평가 및 한국기상산업기술원 조정 결과를 토대로 총괄 조정
 - * 사업간 연계성, 중복성 및 통합성, 연구개발비 예산소요 등을 종합 검토·조정
 - * 전문성 확보를 위해 동일인이 2개 이상의 과제에 응모하거나 분야를 달리하여 응모하는 경우 수행능력을 검토하여 지원 우선순위를 조정

□ 지원 과제 확정

- 최종 검토·조정 결과를 토대로 당해연도 연구개발비의 규모 및 정책방향 등을 고려하여 당해연도 연구개발과제 및 주관연구기관을 확정
- 선정평가 결과와 지원예산 범위를 고려하여 신청 연구비 대비 지원 비율을 달리할 수 있음
 - 다년도 과제 예산은 사업 예산 사정에 따라 연구개발비 변동 가능
- 주관연구기관의 장이 협약을 포기하거나 특별한 사유 없이 30일 이내에 협약체결을 지연하는 경우 「기상업무 연구개발사업 처리규정」 제33조 제1항에 따라 연구개발과제의 선정을 취소하고, 후보과제 중 당해 분야의 후순위 과제를 지원

<평가점수에 따른 신청연구비 인정 범위>

평가점수	신청연구비 조정비율	비고
70점 이상	신청연구비의 100% 지원	
70점 미만	지원 제외	탈락

- ※ 평가결과 과제의 성과달성이 불투명하거나 중복성이나 기타 문제점 등으로 과제 선정에 문제가 제기될 경우 공고된 해당분야의 과제는 선정되지 않을 수 있음
- ※ 전문가 평가의 평가점수는 평가점수 중 최고점수와 최저점수 각 1개를 제외한 총점을 산술평균 처리

2. 평가 관련 참고사항

□ 연구개발과제 추진절차

※ 최종평가의 평가용 최종보고서 제출 시 연구개발성과 활용 계획서 및 자체 표절조사 결과 제출

□ 연구개발과제의 가점 및 감점 기준

	구 분	적용 기간	가감점수	적용대상	적용기산일	비고
	최종평가 우수등급 연구자	2년	5점 이하	최종평가 결과 우수등급인 연구개발과제의 연구책임자가 새로운 연구개발과제의 연구책임자로 신청하는 경우	최종평가 결과 통보일	_
		3년	3점 이하	과학기술정보통신부 우수연구성과로 선정되 거나 주요 국제학술지(네이처 및 사이언 스) 등재 실적이 있는 연구책임자가 신규 과제를 신청하는 경우	포상일 또는 등재일	전문기관의 장이 상세기준 설정
	연구성과 우수자 • 우수기업	3년	3점 이하	최근 3년 이내에 혁신법 시행령 제17조제4항에 따라 포상을 받은 연구책임자가 새로운 연구개발과제를 신청하는 경우	포상일	-
		3년	3점 이하	「기초연구진흥 및 기술개발지원에 관한 법률 시행령」 제16조의3에 따라 선정된 우수 기업부설연구소가 소속된 기업이 참 여기업에 포함된 연구개발과제의 경우	선정일	-
	보안과제	3년	3점 이하	최근 3년 이내에 협약을 체결한 연구개발과 제로서 협약 체결 시 보안과제로 분류된 연구 개발과제의 연구책임자가 새로운 연구개발과 제를 신청하는 경우	협약종료일	-
가점	실용화기술 연구자	3년	3점 이하	최근 3년 이내에 기술실시계약을 체결하여 징수한 기술료 총액이 2,000만 원 이상이거나, 같은 기간 내에 2건 이상의 기술이전, 제품화 실적이 있는 연구책임자가 새로운 연구 개발과제를 신청하는 경우	기술실시계약 체결일	-
	과학기술분야 훈장, 포장 등 수상 경력	3년	3점 이하	최근 3년 이내에 과학기술 분야의 훈장, 포장, 대통령 표창 또는 대통령상을 수상한 연구자가 새로운 연구개발과제를 신청하는 경우	포상일	-
	후속사업 연계	5년	2점 이하	기상업무 연구개발사업으로 수행된 연구성 과를 후속사업으로 연계 개발하여 실 용화를 목적으로 하는 경우	선행 연구개발과제 협약종료일	_
	중소기업 참여	-	2점 이하	해당 과제의 참여기업에 중소기업 또는 「기업 활력 제고를 위한 특별법」 제10조 에 따른 사업재편계획의 승인을 받은 기 업이 포함된 연구개발과제	-	해당 과제에 한정함
	국제공동연구	ı	3점 이하	국제공동연구 중 외국의 정부·법인·단체 또는 개인이 연구개발비의 일부를 부담하는 연구개발과제	-	해당 과제에 한정함
,,	제재처분	3년	5점 이하	혁신법 제32조제1항제3호의 사유로 제재 처분을 받은 경우	처분일	
감점	연구포기	3년	5점 이하	연구개발과제의 연구수행 중 정당한 사유없이 연구를 포기한 경력이 있는 연구책임 자나 기업의 경우	협약 포기 또는 연구포기 통보일 (연구기관→전문기관)	-

- ※ 출처: 기상업무 연구개발사업 처리규정 [별표 2] 참조
- ※ 가감점 부여 기간: 연구개발과제 신청 마감일 기준
- ※ 가감점 부여 원칙: 가감점은 최대 10점 이내에서 부여
- ※ 사업에 참여하는 주관연구기관 또는 총괄연구책임자가 가점을 신청할 경우에 한하여 가점 부여(첨부4), 접수 마감일까지 가점 신청을 하지 않은 책임은 주관연구기관 및 총괄연구책임자에게 있음

□ 연구개발과제 성과 지표 및 목표 설정 유의사항

- 질적지표를 1개 이상 설정하고, 성과 가중치 중 <u>질적지표를 전체 가중치의</u> 50% 이상으로 설정
- ㅇ 필수 성과 지표
 - 과학적 성과(논문)의 우수성(질적지표)
 - · 논문 건수는 성과 지표로 활용이 불가능하며, 연구개발과제 평가에는 출판이 완료된 논문만 인정
 - ※ 게재확정 또는 온라인 출판 논문은 성과로 불인정되므로, 연구개발과제 연도별및 최종 목표 설정에 고려
 - ※ 논문의 사사는 지원과제 정보만 기재되어 있는 경우 성과로 인정되므로, 과제의 성과로 논문 투고에 유의(기상청 타 과제 이중사사 불인정)
 - 총 정부지원금 6억원당 특허 등록 1건 또는 출원 3건(양적지표)
 - 선진국 대비 기술 수준 및 현업 활용도(질적지표)
- ㅇ 그 밖에 활용 가능한 성과 지표 예시

중분류		. 브 르		소분류
구 분	성과 유형		속성	소문파 성과 지표(*는 질적지표)
	0-	1 π8	70	
			게재학술지의 우수성	표준화된 영향력 지수*
				분야별 영향력 지수*
			1 1 0	분야별 보정영향력 지수*
고나하다				표준화된 피인용 지수*
과학적 성과	논문	논문	개별논문의 우수성	분야별 피인용 지수*
0-1				고피인용도 논문 수*
				즉시성 지수*
			논문성과 확산	논문 건수 대비 지재권 전환율*
				논문 건수 대비 기술이전 실시율*
	지식	특허	잠재적 가치	SMART(발명진흥회)/K-PEG(특허정보원)*
키스되	재산		특허성과확산	특허등록건수 대비 기술이전 실시율*
기술적 성과	非	식 기술혁신	기술 개발	개발기술 성능목표 달성도*
0-1	지식		잠재 가치	가치평가*
	재산		검색 가시	전문가 정성평가*
니는[자	-1-1 -1-1			현업 활용도*
사회적 성과	공공 보지	당공 정책효과 복지	정책일반	예측모델 정확도*
о́ Т	7/1			피해예방 효과*

※ 성과 지표는 국회, 과학기술정보통신부장관 등의 요청에 따라 변경될 수 있으며, 과제 특성에 따라 「국가연구개발사업 표준 성과 지표(5차) 성과목표·지표 설정 안내서」를 참고하여 자율 지표를 추가 설정 가능