

보도자료 Press Release

배포일시

2021. 3. 25.(목) 14:00 (총 13매)

보도시점

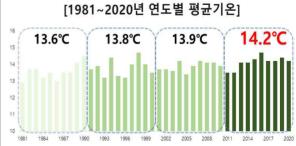
즉 시

담당부서

기후서비스과

담 당 자

과 장 우종 택 사무관 김 연 희

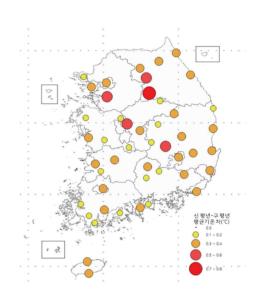

전화번호

062-720-0669

신(新)기후평년값이 보여준 기후변화

- 광주·전남⁾ 평균 기온 13.9℃로 이전 평년값보다 0.2℃ 상승
- 봄·여름은 빨라지고 3~4일 길어진 반면, 가을·겨울은 3~4일 짧아져
- 연 강수량은 이전 평년값보다 감소했으나, 계절·지역별로 강수 편차 상이
- □ 광주지방기상청(청장 김금란)은 **1991년부터 2020년까지 최근 30년** 동안의 기온과 강수량 등을 평균한 새로운 **기후평년값**(1991~2020)을 25일(목)에 발표했다.
 - 기후평년값*은 세계기상기구(wMO)의 기준에 따라 **10년 주기로 산출** 되는 기후의 기준값으로, 이제까지는 2011년에 발표한 1981년부터 2010년의 기후평년값(이전 평년)이 사용되어 왔다.
 - * '0'으로 끝나는 해의 최근 30년간의 기상요소에 대한 누년 평균값 우리나라는 1977년 이래 6번째 산출
 - 이 자료는 기후변화 분석과 예측 외에도 △방재 △건설 △농림 등 **다양한 분야에서 기준지표로 활용**될 예정이다.
- 기상청의 신 기후평년값(1991~2020)에 따르면 광주·전남의 <u>연평균</u>
 기온은 13.9℃로 이전 평년값보다 0.2℃ 상승하였으나, 10년 평균 기온
 으로 보면 1980년대보다 2010년대가 0.6℃ 상승하였다.

¹⁾ 전국적으로 기상관측망이 확충된 1973년 이래 광주·전남 지역에 연속적으로 관측값이 존재하는 7개 지점 (광주, 목포, 여수, 완도, 장흥, 해남, 고흥) 평균값을 사용



○ 지구온난화로 광주·전남의 기온은 상승한 가운데, 다른 지역에 비해 기온상승 폭이 작고, 12월(비슷)을 제외한 모든 월에서 기온상승이 나타났다. 특히. 3월과 5월. 7월과 11월의 기온 상승이 뚜렷했다.

[지역별 평균/최고/최저기온 신·이전 평년 비교]

[M 4 5 8 6 / 4 4 / 4 M 4 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6								
=	1분	신 평년	이전 평년	차이				
'		(a)	(b)	(a-b)				
	평균	12.8	12.5	0.3				
전국	최고	18.3	18.1	0.2				
	최저	8.0	7.7	0.3				
	평균	12.0	11.6	0.4				
중부	최고	17.5	17.3	0.2				
	최저	7.1	6.8	0.3				
	평균	13.4	13.1	0.3				
남부	최고	18.9	18.7	0.2				
	최저	8.7	8.4	0.3				
과즈	평균	13.9	13.7	0.2				
광주· 전남	최고	18.9	18.7	0.2				
200	최저	9.7	9.5	0.2				

[평균기온 차이(신 평년-이전 평년) 공간분포]

^{※ (}단위) °C / 전국(45개 지점), 중부(19개 지점), 남부(26개 지점), 광주·전남(7개 지점)

[광주전남 월별 평균기온 차이(신 평년-이전 평년)]

	구분	01월	02월	03월	04월	05월	06월	07월	08월	09월	10월	11월	12월
평 균	신 평년 (a)	1.7	3.2	7.3	12.7	17.7	21.5	25	25.9	21.9	16.2	9.9	3.9
기	이전 평년 (b)	1.5	3.0	7.0	12.6	17.4	21.3	24.7	25.8	21.8	16.1	9.6	3.9
온 (°C)	차이 (a-b)	0.2	0.2	0.3	0.1	0.3	0.2	0.3	0.1	0.1	0.1	0.3	0.0

- 주요 시·군의 평균기온은 이전 평년과 비교하여 0.1~0.3℃ 상승한
 가운데, 광주·여수·장흥의 기온 상승이 뚜렷했다(+0.3℃).
- 광주(+0.3℃), 목포(+0.1℃), 여수(+0.3℃), 완도(+0.2℃), 장흥(+0.3℃), 해남(+0.1℃), 고흥(+0.1℃)
- 광주·여수·완도·목포의 신 평년값은 광주·전남(13.9°C) 평균보다 높았으며, 그 외 고흥·해남·장흥은 낮게 나타났다.
- 광주(14.1℃), 목포(14.0℃), 여수(14.6℃), 완도(14.3℃), 장흥(13.3℃), 해남(13.5℃), 고흥(13.7℃)

○ 기온에 따른 **폭염과 열대야 현상은 각각 1.4일과 4.5일이 증가**하였고, 이러한 현상은 **최근 10년에 크게 증가**한 것으로 나타났다.

[폭염일수·열대야일수의 신·이전 평년 비교]

	폭염일수	열대야일수	한파일수
신 평년(a)	7.5 (11.0)	13.3 (16.7)	0.0 (0.1)
이전 평년(b)	6.1	8.8	0.1
차이(a-b)	1.4	4.5	-0.1

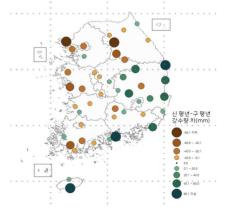
※ 폭염일수: 일 최고기온 33℃ 이상인 날 수 / 한파일수: 아침 최저 기온 -12℃ 이하인 날 수 / 열대야일수: 밤 최저기온이 25도 이상인 날 수 / **괄호안의 숫자: 최근 10년(2011~2020)**

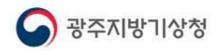
□ 또한, 기후변화로 계절 길이가 변하였는데, 이전 평년보다 봄과 여름은 각각 3일, 4일 길어지면서 2~5일 빨라졌고, 가을과 겨울은 각각 3일, 4일 짧아졌다.

[신 평년과 이전 평년 계절길이 비교]

	이전 평년				신 평년			
	시작일	종료일	계절길이	시작일	종료일	계절길이	비교	
봄	3월 4일	6월 3일	92일	2월 27일	6월 1일	95일	3일↑	
여름	6월 4일	9월 25일	114일	6월 2일	9월 27일	118일	4일↑	
가을	9월 26일	12월 7일	73일	9월 28일	12월 6일	70일	3일↓	
겨울	12월 8일	3월 3일	86일	12월 7일	2월 26일	82일	4일↓	

※ 봄/여름. 일평균기온이 5°C/20°C 이상 올라간 후 다시 떨어지지 않는 첫날 가을/겨울. 일평균기온이 20°C/5°C 미만으로 떨어진 후 다시 올라기지 않는 첫날


□ 광주·전남 연 **강수량은 1,390.3**mm로 이전 평년(1401.5mm)보다 11.2mm 감소한 것으로 나타났다.


[지역별 연강수량 신·이전 평년 비교]

	전국	중부	남부	광주·전남
신 평년(a)	1306.3	1295.8	1314.0	1390.3
이전 평년(b)	1307.7	1317.4	1300.6	1401.5
차이(a-b)	-1.4	-21.6	13.4	-11.2

※ (단위) mm / 전국(45개 지점), 중부(19개 지점), 남부(26개 지점), 광주·전남(7개 지점)

[연 강수량 차이(신 평년-이전 평년) 공간분포

○ 계절별로는 여름철 강수량이 703.4mm로 연 강수량의 51%를 차지하며, 여름철을 제외한 봄, 가을, 겨울의 강수량이 늘어난 것으로 나타났다.

[광주·전남 계절별 강수량 신 평년-이전 평년 차이]

		강수량(mm)							
	봄	여름	가을	겨울					
신 평년(a)	307.7	703.4	273	106.3					
이전 평년(b)	293.5	742.0	262.3	103.6					
차이(a-b)	14.2	-38.6	10.7	2.7					

※ (단위) mm / 광주·전남(7개 지점)

□ 해양수온 역시 지속적으로 상승하여 신 평년의 **해양수온이 이전 평년보다 높고(0.2~0.3℃)**, **우리나라 연근해와 동아시아 해역에서 유사**하게 나타났다.

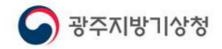
[한반도 연근해]
<1981~2020년 연도별해수면온도@반도연근해>

구 평년기간(1981-2010)

17.5 °C
(16.7-18.5 °C)

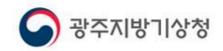
1981 1984 1987 1990 1993 1994 1999 2002 2005 2018 2011 2014 2017 2020

※ 해양수온은 NOAA 재분석 자료 활용


[동아시아 지역]
<1981~2020년 연도별해수면온도(중아시아)>

17.0
16.5
16.0
15.5
16.0
15.4 °C (15.0-15.8 °C)
1981 1984 1987 1990 1993 1996 1999 2002 2005 2008 2011 2014 2017 2020

 ○ 또한, 해양기상부이 관측에서 나타난 우리나라 주변 수온은 2010년 전후로 0.8℃ 상승하였고, 1월 수온 상승(1.4℃)이 연중 가장 큰 것으로 나타났다.



- □ 한편, 이번에 발표된 신 기후평년값은 종전과 달리, 광주·전남 28개 시·군·구단위로 제공(종전 9개)되어, 지자체의 기후변화 대응역량이 향상되고 통계요소도 확대(83→92개)되어 분야별 활용도가 높아질 것 으로 기대된다.
 - 새로운 기후평년값은 각 지역의 기후를 고려한 △농작물이나 파종 시기 선택 △홍수·가뭄 등 재해 예방을 위한 기준 정보 △에너지 공급 관리 등에 기후변화를 반영한 기준 정보로 활용될 수 있다.
- □ 기후평년값은 **기상자료개방포털**(data.kma.go.kr)을 통해 이용할 수 있으며, 화면에서 직접 확인하거나 원자료 내려 받기가 가능하다.
- □ 붙임: 1. 주요 시·군별 주요요소 신 기후평년값
 - 2. 기후변화 관점의 신-이전 평년 및 연대별 비교 분석
 - 3. 달라진 기후평년값 서비스
 - 4. 기상자료개방포털 신 기후평년값 데이터 서비스 메뉴
 - 5. 기온 상승에 따른 기후변화 영향
 - 6. 기후평년값 주요 활용분야

[※] 광주지방기상청은 기후변화 대응을 위한 기후분석으로 과학적인 기초정보를 제공하는 등 적극행정을 추진하도록 최선을 다하겠습니다.

붙임 1 주요 시·군별 주요요소 신 기후평년값

[시·군별 평균·최고·최저기온(℃) 및 강수량(mm) 연 평년값]

	광주 · 전남	광주	목포	여수	완도	장흥	해남	고흥
평균기온	13.9	14.1	14.0	14.6	14.3	13.3	13.5	13.7
최고기온	18.9	19.4	18.4	18.2	18.6	19.2	19.1	19.2
최저기온	9.7	9.8	10.5	11.7	10.7	8.1	8.4	8.6
강수량	1390.3	1380.6	1167.7	1449.1	1531.5	1471.8	1282.0	1449.3

[월별 평균기온(℃)]

	광주·전남	광주	목포	여수	완도	장흥	해남	고흥
1월	1.7	1.0	1.8	2.8	2.7	1.0	1.3	1.6
2월	3.2	2.9	3.0	4.4	3.9	2.6	2.7	3.2
3월	7.3	7.5	6.9	8.3	7.8	6.8	6.7	7.4
4월	12.7	13.4	12.4	13.3	12.9	12.2	12.1	12.7
5월	17.7	18.7	17.5	17.9	17.6	17.3	17.3	17.4
6월	21.5	22.7	21.6	21.2	21.2	21.4	21.5	21.1
7월	25.0	25.9	25.1	24.5	24.7	24.9	25.0	24.7
8월	26.0	26.4	26.3	26.0	26.0	25.6	25.9	25.7
9월	22.0	22.2	22.3	22.6	22.3	21.2	21.5	21.6
10월	16.2	16.1	16.6	17.5	16.9	15.0	15.4	15.7
11월	9.9	9.6	10.4	11.3	10.8	8.7	9.3	9.4
12월	3.9	3.2	4.2	5.1	4.9	2.9	3.3	3.5

[월별 최고기온(℃)]

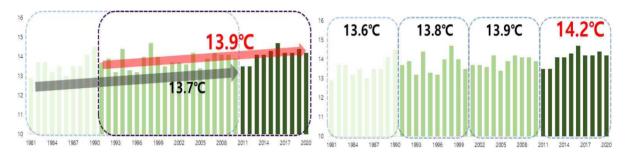
	광주 · 전남	광주	목포	여수	완도	장흥	해남	고흥
1월	6.3	5.7	5.8	6.6	6.3	6.5	6.3	7.0
2월	8.4	8.3	7.6	8.5	8.3	8.8	8.3	9.2
3월	12.9	13.6	11.9	12.4	12.6	13.4	12.8	13.5
4월	18.4	19.9	17.5	17.4	17.9	19.0	18.5	18.9
5월	23.1	24.8	22.3	21.7	22.5	23.6	23.2	23.3
6월	26.0	27.9	25.7	24.4	25.4	26.2	26.4	26.0
7월	28.7	30.0	28.4	27.3	28.3	28.9	29.0	28.7
8월	30.0	30.9	30.0	28.9	29.8	30.0	30.4	30.1
9월	26.7	27.1	26.5	25.8	26.6	26.9	27.0	26.8
10월	21.8	21.9	21.5	21.3	21.6	22.2	22.0	22.2
11월	15.3	15.0	14.9	15.1	15.2	15.5	15.4	15.7
12월	8.7	8.0	8.3	8.9	8.8	8.8	8.8	9.3

[월별 최저기온(℃)]

	광주·전남	광주	목포	여수	완도	장흥	해남	고흥
1월	-2.2	-2.7	-1.3	-0.3	-0.4	-3.9	-3.3	-3.3
2월	-1.3	-1.5	-0.6	0.9	0.2	-3.0	-2.7	-2.3
3월	2.3	2.4	2.9	4.8	3.6	0.5	0.6	1.4
4월	7.4	7.8	8.2	9.9	8.5	5.4	5.6	6.4
5월	12.8	13.4	13.5	14.7	13.4	11.3	11.6	11.7
6월	17.9	18.7	18.5	18.8	17.9	17.3	17.5	16.9
7월	22.2	22.8	22.7	22.5	22.1	21.7	22.0	21.5
8월	22.9	23.2	23.5	23.8	23.2	21.9	22.2	22.2
9월	18.1	18.2	19.0	20.0	19.0	16.5	16.7	17.2
10월	11.3	11.2	12.7	14.5	13.0	8.8	9.0	9.9
11월	5.2	5.0	6.6	8.2	7.0	2.8	3.3	3.6
12월	-0.4	-0.8	0.7	2.0	1.4	-2.4	-1.9	-1.8

[월별 합계강수량(mm)]

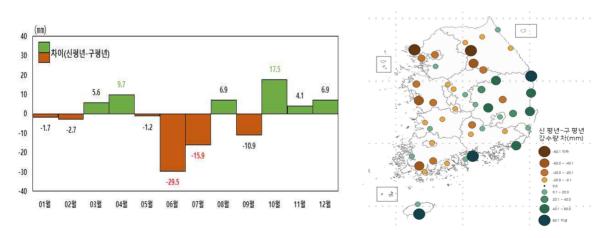
	광주·전남	광주	목포	여수	완도	장흥	해남	고흥
1월	29.6	32.6	31.8	24.5	34.0	28.2	30.4	25.9
2월	43.7	43.6	36.8	44.6	52.6	42.4	39.3	46.5
3월	79.7	61.9	64.9	83.9	103.7	78.7	78.3	86.7
4월	109.3	86.6	80.3	125.2	141.7	108.5	94.5	128.2
5월	118.6	91.4	91.3	143.5	147.0	121.6	102.4	133.3
6월	177.0	152.6	150.2	194.3	207.2	187.0	160.9	186.9
7월	259.4	294.2	220.7	276.8	257.2	275.3	226.6	264.9
8월	267.0	326.4	209.0	264.8	238.8	316.5	248.4	264.9
9월	156.0	145.0	137.7	151.7	176.4	163.6	150.4	167.2
10월	64.7	59.0	58.9	66.6	73.0	63.4	65.1	66.8
11월	52.3	50.2	48.9	46.8	62.7	54.8	51.1	51.4
12월	33.0	37.1	37.2	26.4	37.2	31.8	34.6	26.6



붙임 2

기후변화 관점의 신-이전 평년 및 연대별 비교 분석

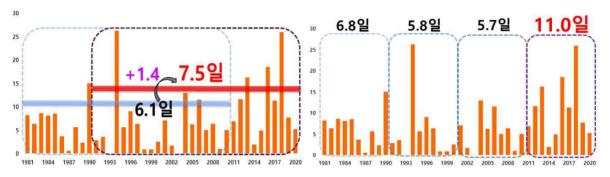
○ 기온 변화


- 지구온난화에 따른 지속적인 기온상승 추세로, 이전 평년(1981~2010)과 비교하여 신 평년(1991~2020)의 광주·전남 평균기온은 0.2℃ 증가함
- 연대별 광주·전남 평균기온도 10년마다 0.1~0.3℃씩 꾸준히 증가함

【그림 1】1981~2020년 연도별 평균기온(왼쪽: 신-이전 평년 비교, 오른쪽: 연대별 비교)

○ 강수량 변화

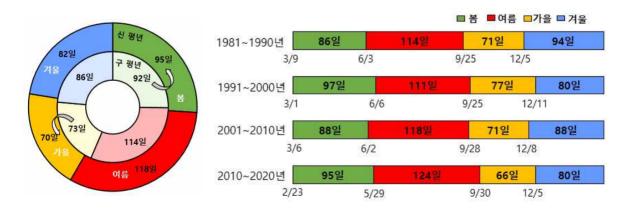
- 이전 평년에 비해, 신 평년의 6월과 7월 강수량은 감소하였으나(6월 29.5mm, 7월 15.9mm), 10월 강수량은 증가함(+17.5mm)
- 연 강수량의 광주·전남 지역별 분포에서는 여수(+10.1mm)와 목포(+4.1mm)는 증가, 그 외의 지역에서는 감소한 경향이 나타남(해남 -43.4mm, 장흥 -33.8mm, 광주 -10.4mm, 고흥 -4.1mm, 완도 -1.2mm)



【그림 2】신 평년값-이전 평년값 차이(왼쪽. 광주전남 평균 월별 비교, 오른쪽. 지점별 연강수량 차이 비교)

○ 폭염일수 변화

- 신 평년(1991~2020)의 폭염일수는 7.5일로 이전 평년(1981~2010, 10.1일)에 비해 1.4일 증가하였고 특히, 최근 10년(2011~2020, 11.0일)에 크게 증가함



* 폭염일수: 일최고기온 33℃ 이상인 날 수

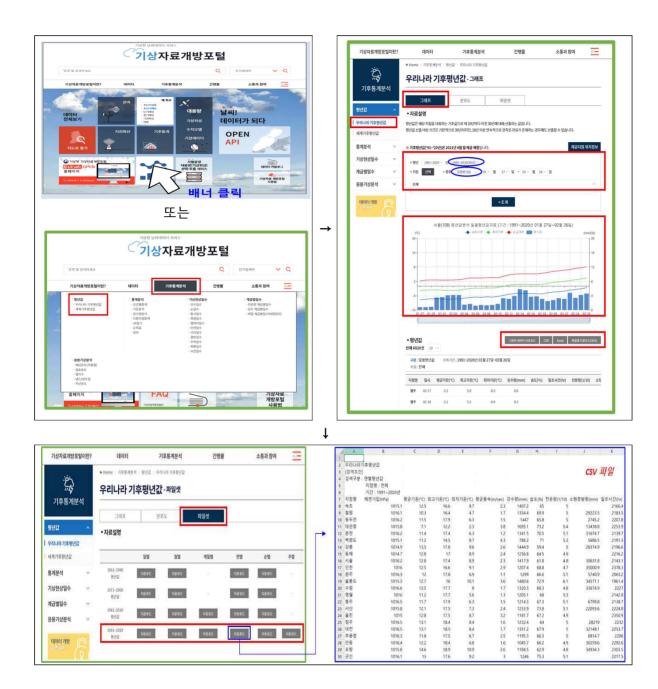
【그림 3】1981~2020년 연도별 폭염일수(왼쪽: 新-이전 평년 비교, 오른쪽: 연대별 비교)

○ 계절길이 변화

- 신 평년의 봄과 여름은 3일, 4일 길어지고 2~5일 빨라졌으나, 가을과 겨울은 3일, 4일 짧아짐
- 최근 10년의 여름은 124일로 과거 연대별에 비해 크게 길어진 반면, 가을과 겨울은 2000년대보다 각각 7일. 8일 짧아짂

- * 계절길이: 광주·전남 7개 지점(광주, 목포, 여수, 완도, 장흥, 해남, 고흥)을 평균하여 산출
- * 계절 시작의 정의
- 봄/여름: 일평균기온이 5℃ / 20℃ 이상 올라간 후 다시 떨어지지 않는 첫날
- 가을/겨울: 일평균기온이 20℃ / 5℃ 미만으로 떨어진 후 다시 올라가지 않는 첫날

【그림 4】계절 길이(왼쪽: 신-이전 평년 비교, 오른쪽: 연대별 비교)


붙임 3 달라진 기후평년값 서비스

- (제공지점) 지자체별 기후변화 적응정책 지원과 국민체감 기후서비스 제공을 위한 지점확대(전국 73개→219개, 광주·전남 9개→28개 시·군·구 단위)
 ※ 광주 지역 예시 : 이전 평년('81-'10) 1개 → 신 평년('91-'20) 4개구 평년값 제공
- (통계요소) 기온, 강수량, 현상일수 등 16개 기상요소에 대한 다양한 통계정보와 방재, 이상기상, 보건 등 분야별 활용도 강화를 위한 산출요소 추가 제공(83개→92개)
- (제공방식) 기상기후데이터 이해와 활용성 강화를 위한 시계열, 전자 기후표 등 가시화 정보 추가(기존은 문·숫자 중심의 단편적 정보)
- **(이용방법)** 기상자료개방포털(data.kma.go.kr)을 통한 웹 서비스(3.25~)
 - ※ 기본통계 및 주요 분석 정보 제공(3.25) → 가시화 정보 및 계절별 기상이슈 분석정보 제공(수시)→ 한국기후표·기후도 발간·배포(11월)

붙임 4

기상자료개방포털 신 기후평년값 데이터 서비스 메뉴

붙임 5 기온 상승에 따른 기후변화 영향

○ 1980년대와 2010년대 광주·전남 평균, 최고, 최저기온 비교

[1980년대와 2010년대 10년 평균 기온 비교]

구분	평균기온(℃)	최고기온(℃)	최저기온(℃)
① 1980년대 (1981~1990년)	13.6	18.6	9.5
② 2010년대 (2011~2020년)	14.2	19.0	10.0
차이(②-①)	0.6	0.4	0.5

○ 한반도 1° 상승에 따른 분야별 영향(환경부, 2020)

분야	기온 상승(1℃)에 따른 영향	
농업	o 농작물 재배적지 변경 및 생산량 감소 - 위도 81km 북상, 고도 154m 상승 - 벼 생산량 감소, 감자 상서수량 11% 감소	
건강	o 기저질환 취약성 증가 및 고온·저온으로 인한 사망 위험 증가 - 폭염으로 인한 사망위험 8% 증가 - 봄 꽃가루 환자 14% 증가 - 식중독 발생건수 5.27% 증가, 환자 6.18% 증가	
생태계	o 수인성 및 식품 매개 감염병 발생률 증가 - 모기 성체 개체 수 27% 증가	
산림	o 나무 고사율 증가 - 소나무 1.01%, 낙엽송 1.43%, 잣나무 2.26%	

붙임 6 기후평년값 주요 활용분야

○ 주요 활용분야

기관·분야	활용내용	
기상청	o 기후변화 분석 및 비교•기상현상수준 파악	
행정안전부	o 강우분석, 홍수유출해석·상습가뭄재해지구 지정 및 도시재해취약성 분석	
환경부	o 기후변화 적응정책수립	
국토교통부	o 기후요건에 따른 콘크리트 양생·평균기온 및 극값에 따른 콘크리트 타설	
농촌진흥청	o 기후변화 실태조사 •품종별 출수한계기 설정	
지자체	o 지역별 기후변화 적응정책수립 •기후변화 취약성 평가	
건설·에너지	o 적정 공사기간 산정 및 안전관리•기반시설 설계 및 시공•에너지 규제 및 사용량 예측	

○ 활용 사례

[농촌진흥청]	[건축분야]
o 기온, 일조시간, 강수일수 등을 반영한 벼 품종	o 국토교통부 공공 건설공사 공사기간 산정
육성 및 재배법 개선을 위한 기초자료	기준
o 벼 출수한계기, 기후 등숙량 계산에 활용	
[에시: 벼 출수기/농촌진흥청 연구자료] 16. 남부째한지대	 작업일수 = 달력일수 - 비작업일수 ◇ 비작업일수 = A + B - C A : 해당 월에 기후여건으로 인해 계획된 공종의 작업이 불가능한 일수 B : 해당 월에 포함된 법정 공휴일수 C : 월별 중복일수(C) = A × B ÷ 달력일수 (소수점 첫째자리에서 반올림) [예시] 1월에 시행되는 토공사 • 토공사가 불가능한 강우일수(강수량 10mm/일 이상): 7일 A • 법정공휴일수 : 4일(일요일)+1일(신정) = 5일 B • 중복일수 : 7일(A) × 5일(B) ÷ 31일(달력일수) ≒ 1.1일(1일 적용) C © 1월 비작업일수 = 7일 + 5일 - 1일 = 11일 > 8일 ※ 주 40시간 근무제에 따른 비작업일수 = 8일 © 1월 작업일수 = 31일 - 11일 = 20일 (∴가동률 = 20/31 = 65%)

- 14 -
