

# 보도자료 Press Release



배포일시

2018. 8. 17.(금) 16:00 (총 9매)

보도시점

즉 시

담당부서

수도권기상청 기후서비스과

담 당 자

과 장 박종숙

전화번호

070-7850-8336

## 2018년과 1994년 수도권 폭염 비교

- 2018년, 1994년 폭염과 유사하나 북태평양고기압 세력 더욱 강해
- 서울 39.6℃. 관측 시작 이래 111년 만에 일 최고기온 극값 1위
- 현재(8월 16일)까지 1973년 이래 수도권 평균 최고기온, 폭염일수 1위

## 1. 폭염 원인

- □ 티벳 고기압과 북태평양고기압 발달
  - 2018년과 1994년 모두 우리나라 주변 대기상층에 티벳 고기압이, 대기중·하층에서는 북태평양고기압이 평년보다 강하게 발달하여 덥고 습한 공기가 유입되는 가운데, 맑은 날씨로 인한 강한 일사 효과까지 더해져 무더운 날씨가 이어졌음
  - 특히, **2018년**은 **1994**년과 비교하여 **티벳 고기압과 북태평양고기압의** 세력이 더욱 강하고, 보다 폭넓게 발달한 특징을 보였음

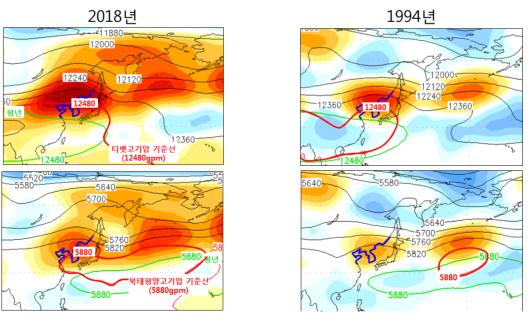



그림 1. 7월 (위) 200hPa와 (아래) 500hPa 고도 편차(빨강/파랑 채색: 평년보다 높/낮은 고도)

### □ 열대 서태평양의 대류활동 강화

- (열대 태평양 해수면온도) 2018년은 봄철부터 최근(6월 1일~8월 16일)까지 엘니뇨·라니냐 감시구역의 해수면온도가 중립상태를 보인 반면에, 1994년에는 봄철부터 엘니뇨가 이어졌음
- 하지만, 두 해 모두 열대 서태평양에서 해수면온도가 평년보다 높게 유지되면서, **필리핀 해 부근에서 상승기류(대류활동)가 활발**했고, 이 상승기류는 우리나라 남쪽 해상에서 하강기류(대류억제)로 바뀌면서, **북태평양고기압이 발달하는데 기여**한 것으로 분석됨

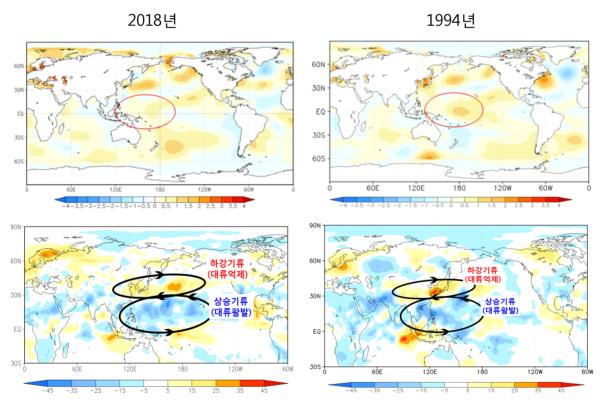



그림 2. 7월 (위) 해수면온도편차(빨강/파랑 채색: 평년보다 높/낮은 해수면온도)와 (아래) 지구장파복사<sup>1)</sup> 편차(빨강/파랑 채색: 평년보다 대류(상승기류) <mark>억제/활</mark>발 영역)

<sup>1)</sup> 지구장파복사: 대지, 대기, 구름 등이 방출하는 적외복사

#### □ 대기상층 파동 현상

- 2018년과 1994년 모두 중위도 지역을 중심으로 온난한 성질의 고기압들이 동서방향으로 늘어서 있는 기압계가 특징적으로 나타났음
- 특히, 북반구 중위도 지역을 중심으로 나타난 고기압들의 강도는 1994년에 비해 올해가 더욱 강하게 나타나, 유럽과 중동, 동아시아와 북미를 중심으로 폭염과 산불 등 기상재해가 빈번하게 발생함
  - ※ 스웨덴, 알제리, 모로코 등 관측사상 최고기온 기록, 사하라사막 최고기온51.3℃ <참고 2 참조>

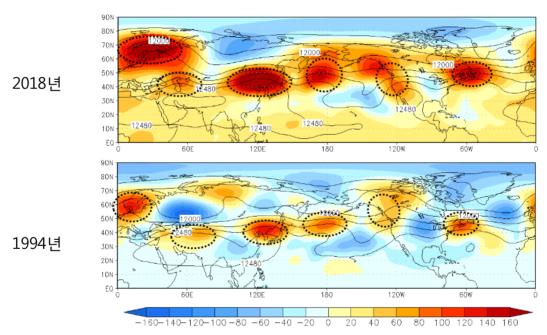



그림 3. 7월 200hPa 고도 편차(빨강/파랑 채색: 평년보다 높/낮은 고도)

○ 이로 인해, 두 해 모두 중위도 지역에서의 제트기류<sup>2)</sup>가 평년보다 북쪽에 위치하여 **중위도 대기상층의 동서흐름이 정체되면서 폭염이** 지속된 것으로 분석됨 <그림 4 참조>

<sup>2)</sup> 제트기류: 8~18km 상공에 폭이 좁고 속도가 극히 강한(50kts 이상) 편서풍으로 남북의 기온차이가 큰 지역에서 나타남

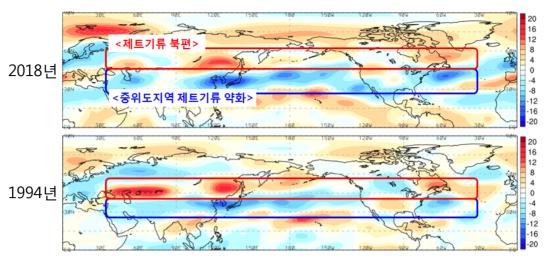



그림 4. 7월 200hPa 동서바람 편차(빨강/파랑 채색: 평년보다 <mark>강</mark>/약한 바람)

- 2018년과 1994년의 폭염은 티벳 고기압과 북태평양고기압의 세력이 강했던 이례적인 사례임. 특히, 2018년에는 1994년보다 고기압의 세력이 더욱 강했고, 장마 종료 후 강수현상이 매우 적었기 때문에 뜨거운 열기가 식지 못하고 지속적으로 누적되면서 폭염과 열대야가 더욱 강화되는 특징을 보였음
  - (태풍의 영향) 1994년에는 8월 상순에 태풍(제11호 BRENDAN, 제14호 ELLIE)의 영향으로 두 차례의 많은 비가 내려 더위가 일시적으로 누그러졌으나, 2018년에는 장마 종료 후, 두 개의 태풍(제10호 악필. 제12호 종다리)이 오히려 폭역을 강화시키는 역할을 함 <참고 1 참조>

## 2. 기온과 강수량 극값 현황

□ [최고기온] 서울은 39.6℃를 기록(2018년 8월 1일)하여 종전의 기록인
 38.4℃(1994년 7월 24일)를 뛰어넘으면서, 기상관측을 시작(1907년 10월 1일)한
 이래 111년 만에 가장 높은 값을 기록하였음

표 1. 기상관측 시작 이래 일 최고기온 극값 경신 주요 지점(6월 1일~8월 16일, ℃)

| 관측<br>지점 | 관측<br>개시일   |      | 1위 2위       |      | 3위          |      |             |
|----------|-------------|------|-------------|------|-------------|------|-------------|
| 서울       | 1907.10.01. | 39.6 | 2018.08.01. | 38.4 | 1994.07.24. | 38.3 | 2018.07.31. |
| 수원       | 1964.01.01. | 39.3 | 2018.08.01. | 39.2 | 2018.08.15. | 38.1 | 2018.08.02. |

□ [최저기온] 밤사이에도 서울에서 30.3℃(2018년 8월 2일)를 기록하면서 기상관측 이래 가장 높은 값을 경신하였음

표 2. 기상관측 시작 이래 일 최저기온 극값 경신 주요 지점(6월 1일~8월 16일, ℃)

| 관측<br>지점 | 관측<br>개시일   |      | 1위          | 2위   |             | 3위   |             |
|----------|-------------|------|-------------|------|-------------|------|-------------|
| 서울       | 1907.10.01. | 30.3 | 2018.08.02. | 30.0 | 2018.08.03. | 29.2 | 2018.07.23. |
| 인천       | 1904.08.29. | 29.1 | 2018.08.02. | 28.9 | 2018.08.03. | 28.5 | 2018.08.14. |

□ [수도권 평균 기온과 강수량] 올 여름철(6월 1일~8월 16일) 수도권 평균기온과 최고기온은 각 25.6℃, 30.3℃로 평년(23.5℃, 27.8℃)에 비해 2.1℃, 2.5℃ 높아 1973년 통계작성 이후 가장 높았고, 일조시 간도 645.8시간으로 평년(422.1시간)에 비해 223.7시간 많아 가장 길었음

표 3. 수도권 기온과 강수량 순위 현황(6월 1일~8월 16일)

| 구분 | 평균기온<br>(편차)       | 평균최고기온<br>(편차)   | 평균최저기온<br>(편차)   | 일조시간<br>(편차)          | 강수량<br>(퍼센타일)         | 강수일수<br>(일)      |
|----|--------------------|------------------|------------------|-----------------------|-----------------------|------------------|
| 값  | 25.6°C<br>(+2.1°C) | 30.3℃<br>(+2.5℃) | 21.9℃<br>(+1.8℃) | 645.8hr<br>(+223.7hr) | 316.5mm<br>(+3.6퍼센타일) | 21.3일<br>(-9.9일) |
| 순위 | 최고 1위              | 최고 1위            | 최고 1위            | 최대 1위                 | 최소 4위                 | 최소 1위            |
| 1위 |                    |                  |                  |                       | '11년 1540.9mm         | '11년 47.5일       |
| 2위 | ′94년 25.5℃         | ′94년 30.1℃       | ′13년 21.8℃       | '16년 549.5hr          | '88년 1362.6mm         | '90년 41.3일       |
| 3위 | ′16년 25.0℃         | '00년 29.5℃       | ′94년 21.7℃       | '15년 547.1hr          | '87년 978.3mm          | '98년 40.8일       |

## 3. 폭염일수와 열대야일수 현황

- □ 올 여름철(6월 1일~8월 16일) 수도권 폭염일수는 25.8일(평년 4.2일)로 1973년 통계작성 이후 가장 많았고, 열대야일수는 22.5일(평년4.7일)로 1994년(28.8일) 이후 두 번째로 많았음
  - ※ 폭염일수: 일 최고기온이 33℃ 이상인 날
    열대야일수: 밤(18:01~익일09:00) 최저기온이 25℃ 이상인 날
- □ 낮 동안의 폭염은 주로 내륙지역에, 밤 동안의 열대야는 주로 해안가를 중심으로 나타났으며, 이러한 특징은 1994년과 유사함

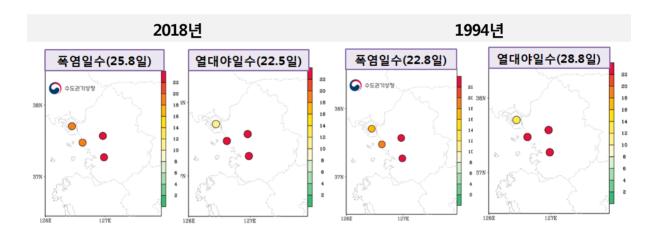



그림 5. 수도권 4개 지점의 폭염일수와 열대야일수 분포도(6월 1일~8월 16일)

표 4. 수도권 폭염일수와 열대야일수 순위 현황(6월 1일~8월 16일)

| ᄉᅁ | 수도권     |                  |        |           |  |  |
|----|---------|------------------|--------|-----------|--|--|
| 순위 | 폭염일수(ਸ਼ | 명년 <b>4.2일</b> ) | 열대야일수( | (평년 4.7일) |  |  |
| 1위 | 25.8일   | 2018년            | 28.8일  | 1994년     |  |  |
| 2위 | 22.8일   | 1994년            | 22.5일  | 2018년     |  |  |
| 3위 | 11.5일   | 2016년            | 18.3일  | 2016년     |  |  |
| 4위 | 11.3일   | 2012년            | 14.5일  | 2013년     |  |  |
| 5위 | 9.5일    | 1978년            | 12.5일  | 2012년     |  |  |

<sup>※</sup> 폭염일수·열대야일수: 1973년 이후, 수도권 4개 지점 평균

<sup>※</sup> 같은 극값이 2개 이상 존재할 때는 최근 값을 우선순위로 함(출처: 기후통계지침(2017))

표 5. 주요 도시별 폭염일수와 열대야일수 현황 (6월 1일~8월 16일)

| 지점 | 폭염일수 | 폭염 최장 지속일수 | 열대야일수 | 열대야 최장<br>지속일수 |
|----|------|------------|-------|----------------|
| 서울 | 31   | 22         | 27    | 26             |
| 인천 | 19   | 7          | 26    | 26             |
| 수원 | 35   | 30         | 26    | 25             |

※ 참고 1. 2018년과 1994년의 기온과 강수량 현황

### **참고 1** 2018년과 1994년의 수도권 기온과 강수량 현황

#### □ 여름철(6월 1일~8월 16일) 기온과 강수량

○ 2018년과 1994년의 수도권 평균기온은 각 25.6℃, 25.5℃로 평년보다 2.
 1℃, 2.0℃로 높았고, 강수량은 각 316.5mm, 314.7mm로 평년보다 적었음

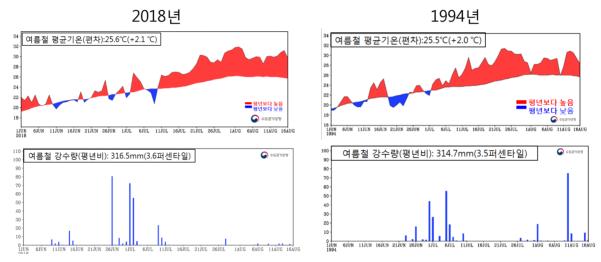



그림 6. 수도권 4개 지점의 여름철(6월 1일~8월 16일) 평균기온 일변화 시계열과 강수량(mm) 시계열

※ 평년: 1981~2010년, 30년 평균

※ 퍼센타일: 평년 동일 기간의 강수량을 크기가 작은 것부터 나열하여 가장 작은 값을 0,

가장 큰 값을 100으로 하는 수(평년 비슷 범위: 33.33~66.67퍼센타일)

### □ 장마특성

- 2018년과 1994년의 장마기간은 평년보다 짧고, 강수량은 적었음
- 특히, 올해 장마는 7월 11일에 중부지방에서 종료되면서 장마기간이 1973년 이래 두 번째로 짧아 폭염이 일찍 시작된 요인이 됨
  - ※ 가장 짧은 장마: 1973년 제주도 6월 25일~7월 1일(7일), 남부와 중부 6월 25~30일(6일)

표 6. 2018년과 1994년, 평년(1981~2010년)의 장마 시작일과 종료일 및 기간

|      | 장마 시종            | 일과 기간            | 평년          |             |       |
|------|------------------|------------------|-------------|-------------|-------|
|      | 2018년            | 1994년            | 시작          | 종료          | 기간(일) |
| 중부지방 | 6.26.~7.11.(16일) | 6.25.~7.16.(22일) | 6.24. ~ 25. | 7.24. ~ 25. | 32    |

### 표 7. 올해(2018년)와 평년(1981~2010년)의 장마기간 강수일수 및 평균 강수량

|      | 강수일수와          | 평균 강수량         | ÷량 평년   |            |  |
|------|----------------|----------------|---------|------------|--|
|      | 2018년          | 1994년          | 강수일수(일) | 평균 강수량(mm) |  |
| 중부지방 | 11.0일(281.7mm) | 10.1일(206.1mm) | 17.2    | 366.4      |  |

### 표 8. 수도권 4개 지점의 기온과 강수량 현황(6월 1일~8월 16일)

| 구분     | 2018년 (값/순위) |       | 1994년 (값/순위) |       |
|--------|--------------|-------|--------------|-------|
| 평균기온   | 25.6℃        | 최고 1위 | 25.5℃        | 최고 2위 |
| 평균최고기온 | 30.3℃        | 최고 1위 | 30.1℃        | 최고 2위 |
| 평균최저기온 | 21.9℃        | 최고 1위 | 21.7℃        | 최고 3위 |
| 일조시간   | 645.8hr      | 최대 1위 | 536.3hr      | 최대 6위 |
| 강수량    | 316.5mm      | 최소 4위 | 314.7mm      | 최소 3위 |
| 강수일수   | 21.3일        | 최소 1위 | 22.5일        | 최소 4위 |
| 폭염일수   | 25.8일        | 최대 1위 | 22.8일        | 최대 2위 |
| 열대야일수  | 22.5일        | 최대 2위 | 25.5일        | 최대 1위 |